Skip to main content

Lactic Acid Bacteria in the Support of Immuno-compromised Hosts

  • Chapter
The Lactic Acid Bacteria Volume 1

Abstract

Severe microbial infections are frequently present in immuno-compromised patients, such as due to malignant tumours, organ graft, thermal injury and in particular acquired immuno-deficiency syndrome (AIDS). In these cases, the opportunistic infections are generally caused by parasites with high drug resistance, such as aerobic or facultatively anaerobic Gram-negative rods (Pseudomonas, Xanthomonas, Achromobacter, Serratia, Klebsiella, Proteus, etc.), non-endospore-forming anaerobic rods (Bacteroides, Fusobacterium, etc.), Staphylococcus (especially methicillin-resistant S. aureus and cloxacillin-resistant S. epidermidis), non-tuberculous mycobacteria (Mycobacterium avium-intracellulare complex, M. scrofulaceum, M. kansasii, etc.), fungi (Candida, Aspergillus, Cryptococcus, etc.), viruses (Herpesvirus, Cytomegalovirus, etc.), and Protozoa (Pneumocystis carinii and Toxoplasma gondii). Thus, clinical control of the opportunistic infections using anti-microbials is very difficult, and a wide spectrum of disease manifestations, persistent infections, and disseminated diseases are frequently encountered. Therefore, it is important to provide a device to restore or enhance the lowered immune functions in compromised patients, using biological response modifiers (BRMs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D.O. (1982). Macrophage activation and secretion. Summary. Federation Proceedings, 41, 2193–7.

    Google Scholar 

  • Allison, A.C. (1979). Mode of action of immunological adjuvants. Journal of Reticuloendothelial Society, 26, 619–30.

    Google Scholar 

  • Bermudez, L.E.M. & Young, L.S. (1988). Tumour necrosis factor, alone or in combination with IL-2, but not IFN-γ, is associated with macrophage killing of Mycobacterium avium complex. Journal of Immunology, 140, 3006–13.

    Google Scholar 

  • Bjornson, A.B., Bjornson, H.S. & Altemeier, W.A. (1981). Serum-mediated inhibition of polymorphonuclear leukocyte function following burn injury. Annals of Surgery, 194, 568–75.

    Article  Google Scholar 

  • Bloksma, N., Heer, E., de, Dijk, H., van & Willers, J.M. (1979). Adjuvanticity of lactobacilli. I. Differential effects of viable and killed bacteria. Clinical and Experimental Inmmunology,37, 367–75.

    Google Scholar 

  • Bogdanov, I.G. & Daley, P.G. (1975). Antitumour glycopeptide from Lactobacillus bulgaricus cell wall. FEBS Letters, 57, 259–61.

    Article  Google Scholar 

  • Boros, T. & Rapp, H. J. (1973). Conference on the use of BCG in therapy of cancer. National Cancer Institute Monograph, 39.

    Google Scholar 

  • Campbell, P.A. (1976). Immunocompetent cells in resistance to bacterial infections. Bacteriological Reviews, 40, 284–313.

    Google Scholar 

  • Chedid, L. & Audibert, F. (1977). Chemically defined bacterial products with immunopotentiating activity. Journal of Infectious Diseases, 136, S246–51.

    Article  Google Scholar 

  • Chedid, L., Audibert, F. & Johnson, A.G. (1978). Biological activities of muramyl dipeptide, a synthetic glycopeptide analogue to bacterial immunoregulating agents. Progress in Allergy, 25, 63–105.

    Google Scholar 

  • Cheers, C. & McKenzie, I.F.C. (1978). Resistance and susceptibility of mice to bacterial infection: Genetics of listeriosis. Infection and Immunity, 19, 755–62.

    Google Scholar 

  • Cheers, C. & Stanley, E.R. (1988). Macrophage production during murine listeriosis: Colony-stimulating factor (CSF-1) and CSF-1-binding cells in genetically resistant and susceptible mice. Infection and Immunity,56, 2972–8.

    Google Scholar 

  • Cheers, C., McKenzie, I.F.C., Pavlov H., Waid, C. & York, J. (1978) Resistance and susceptibility of mice to bacterial infection: Course of listeriosis in resistant or susceptible mice. Infection and Immunity, 19,763–70.

    Google Scholar 

  • Chirigos, M.A., Saito, T., Talmadge, J.E., Budzynski, W., Sinibaldi, P. & Gruys, E. (1986). The immunomodulatory and therapeutic activity of Picibanil (OK-432). In Mechanisms of Antitumor Effects of OK-432, ed. N. Ishida. Excerpta Medica, Tokyo, Japan, pp. 1–9.

    Google Scholar 

  • Czuprynsky, C.J., Campbell, P.A. & Henson, P.M. (1983). Killing of Listeria monocytogenes by human neutrophils and monocytes, but not by monocyte-derived macrophages. Journal of Reticuloendothelial Society, 34, 29–44.

    Google Scholar 

  • Dye, E.S., North, R.J. & Mills, C.D. (1981). Mechanisms of antitumour action of Corynebacterium parvum. Journal of Experimental Medicine,154, 609–20.

    Article  Google Scholar 

  • Edwards, D. & Kirkpatrick, C.H. (1986). The immunology of mycobacterial diseases. American Review of Respiratory Disease, 134, 1062–71.

    Google Scholar 

  • Emmerling, P., Finger, H. & Hof, H. (1977). Cell-mediated resistance to infection with Listeria monocytogenes in nude mice. Infection and Immunity, 15, 382–5.

    Google Scholar 

  • Esparza, I., Männel, D., Ruppel, A., Falk, W. & Krammer, P.H. (1987). Interferon γ and lyphotoxin or tumor necrosis factor act synergistically to induce macrophage killing of tumor cells and schistosomula of Schistosoma mansoni. Journal of Experimental Medicine, 166, 589–94.

    Article  Google Scholar 

  • Ferrante, A. (1989). Tumor necrosis factor alpha potentiates neutrophil antimicrobial activity: Increased fungicidal activity against Torulopsis glabrata and Candida albicans and associated increases in oxygen radical production and lysosomal enzyme release. Infection and Immunity, 57, 2115–22.

    Google Scholar 

  • Gangadharam, P.R.J., Edwards III, C.K., Murthy, P.S. & Pratt, P.F. (1983). An acute infection model for Mycobacterium intracllulare disease using beige mice: Preliminary results. American Review of Respiratory Disease,127, 648–9.

    Google Scholar 

  • Garcia-Penarrubia, P., Bankhurst, A.D. & Koster, F.T. (1989a). Experimental and theoretical kinetics study of antibacterial killing mediated by human natural killer cells. Journal of Immunology, 142, 1310–17.

    Google Scholar 

  • Garcia-Peñarrubia, P., Lennon, M.P., Koster, F.T., Kelley R.O. & Bankhurst, A.D. (1989b). Selective proliferation of natural killer cells among monocyte-depleted peripheral blood mononuclear cells as a result of stimulation with staphylococcal enterotoxin B. Infection and Immunity, 57, 2057–65.

    Google Scholar 

  • Garcia-Peñarrubia, P., Koster, F.T., Kelley, R.O., McDowell, T.D. & Bankhurst, A.D. (1989c). Antibacterial activity of human natural killer cells. Journal of Experimental Medicine, 169, 99–113.

    Article  Google Scholar 

  • Glasgow, L.A., Fischbach, J., Bryant, S.M. & Kern, E.R. (1977). Immunomodulation of host resistance to experimental viral infections in mice: effects of Corynebacterium acnes, Corynebacterium parvum, and Bacille Calmette-Guérin. Journal of Infectious Diseases, 135, 763–70.

    Article  Google Scholar 

  • Gorelik, E., Wiltrout, R.H., Okumura, K., Habu, S. & Herberman, R.B. (1982). Role of NK cells in the control of metastatic spread and growth of tumor cells in mice. International Journal of Cancer, 30, 107–12.

    Article  Google Scholar 

  • Grabstein, K.H., Urdal, D.L., Tushinski, R.J., Mochizuki, D.Y., Price, V.L., Cantrell, M.A., Gillis, S. & Conlon, P.J. (1986). Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science,232,506–8.

    Article  Google Scholar 

  • Grogan, J.B. (1976a) Altered neutrophil phagocytic function in burn patients. Journal of Trauma, 16, 734–8.

    Article  Google Scholar 

  • Grogan, J.B, (1976b). Suppressed in vitro chemotaxis of burn neutrophils. Journal of Trauma, 16, 985–8.

    Article  Google Scholar 

  • Halpern, B., Fray, A., Grepin, Y., Platica, O., Lornet, A.M., Rabourdin, A., Sparros, L. & Isac, R. (1973). Corynebacterium parvum, a potent immunostimulant in experimental infections and malignancies. In Immunopotentiation (A Ciba Foundation Symposium 18 (new series)), ed. P. Medawar. Elsevier Excerpta Medica, Amsterdam, The Netherlands, pp. 217–36.

    Chapter  Google Scholar 

  • Harrington-Fowler, L., Henson, P.M. & Wilder, M.S. (1981). Fate of Listeria monocytogenes in resident and activated macrophages. Infection and Immunity, 33, 11–16.

    Google Scholar 

  • Hashimoto, S., Nomoto, K., Matsuzaki, T., Yokokura, T. & Mutai, M. (1984). Oxygen radical production by peritoneal macrophages and Kupffer cells elicited with Lactobacillus casei. Infection and Immunity,44, 61–7.

    Google Scholar 

  • Hashimoto, S, Nomoto, K., Nagaoka, M. & Yokokura, T. (1987). In vitro and in vivo release of cytostatic factors from Lactobacillus casei-elicited peritoneal macrophages after stimulation with tumor cells and immunostimulants. Cancer Immunology Immunotherapy, 24, 1–7.

    Article  Google Scholar 

  • Horikawa, Y. (1986). Effects of Lactobacillus casei-containing ointment on the healing and protection against opportunistic infection of thermal injury wounds in mice. Hiroshima Journal of Medical Sciences, 35, 1–14.

    Google Scholar 

  • Johnston Jr., R.B. (1978). Oxygen metabolism and the microbicidal activity of macrophages. Federation Proceedings,37,2759–64.

    Google Scholar 

  • Kato, I., Kobayashi, S., Yokokura, T. & Mutai, M. (1981). Antitumor activity of Lactobacillus casei in mice. Gann, 72, 517–23.

    Google Scholar 

  • Kato, I., Yokokura, T. & Mutai, M. (1983). Macrophage activation by Lactobacillus casei in mice. Microbiology and Immunology, 27, 611–18.

    Google Scholar 

  • Kato, I., Yokokura, T. & Mutai, M. (1984). Augmentation of mouse natural killer cell activity by Lactobacillus casei and its surface antigens. Microbiology and Immunology, 28, 209–17.

    Google Scholar 

  • Kato, I., Yokokura, T. & Mutai, M. (1988). Correlation between increase in Ia-bearing macrophages and induction of T cell-dependent antitumor activity by Lactobacillus casei in mice. Cancer Immunology Immunotherapy,26,215–21.

    Article  Google Scholar 

  • Kratz, S.S. & Kurlander, R.J. (1988). Characterization of the pattern of inflammatory cell influx and cytokine production during the murine host response to Listeria monocytogenes. Journal of Immunology, 141, 598–606.

    Google Scholar 

  • Kurtz, R.S., Young, K.M. & Czuprynski, C.J. (1989). Separate and combined effects of recombinant interleukin-lα and gamma interferon on antibacterial resistance. Infection and Immunity, 57,553–8.

    Google Scholar 

  • Loose, L.D. & Turinsky, J. (1980). Depression of the respiratory burst in alveolar and peritoneal macrophages after thermal injury. Infection and Immunity, 30, 718–22.

    Google Scholar 

  • Mackaness, G.B. (1969). The influence of immunologically committed lymphoid cells on macrophage activity. Journal of Experimental Medicine, 129, 973–92.

    Article  Google Scholar 

  • Mandel, T.E. & Cheers, C. (1980). Resistance and susceptibility of mice to bacterial infection: Histology of Isteriosis in resistant and susceptible strains. Infection and Immunity, 30, 851–61.

    Google Scholar 

  • Matsumoto, K., Ogawa, H., Nagase, O., Kusama, T. & Azuma, I. (1981). Stimulation of nonspecific host resistance to infection induced by muramyl dipeptides. Microbiology and Immunology,25, 1047–58.

    Google Scholar 

  • Metcalf, D. (1984). The colony stimulating factors. In The Hemopoietic Colony Stimulating Factors, ed. D. Metcalf. Elsevier/North-Holland Publishing Co., Amsterdam, The Netherlands, pp. 55--96.

    Google Scholar 

  • Miake, S., Nomoto, K., Yokokura, T., Yoshikai, Y., Mutai, M. & Nomoto, K. (1985). Protective effect of Lactobacillus casei on Pseudomonas aeruginosa infection in mice. Infection and Immunity, 48, 480–5.

    Google Scholar 

  • Miller, C.L. & Baker, C.C. (1979). Changes in lymphocyte activity after thermal injury. The role of suppressor cells. Journal of Clinical Investigation,63, 202–10.

    Article  Google Scholar 

  • Mitsuyama, M., Takeya, K., Nomoto, K. & Shimotori, S. (1978). Three phases of phagocyte contribution to resistance against Listeria monocytogenes. Journal of General Microbiology, 106, 165–71.

    Google Scholar 

  • Miyajima, A., Miyatake, S., Schreurs, J., Vries, J., de Arai, N., Yokota, T. & Arai, K. (1988). Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines. FASEB Journal, 2, 2462–73.

    Google Scholar 

  • Moore, R.N., Oppenheim, J.J., Farrar, J.J., Carter Jr. C.S., Waheed, A. & Shadduck, R.K. (1980). Production of lymphocyte-activating factor (interleukin 1) by macrophages activated with colony-stimulating factors. Journal of Immunology,125, 1302–5.

    Google Scholar 

  • Morahan, P.S., Edelson, P.J. & Gass, K. (1980). Changes in macrophage ectoenzymes associated with antitumor activity. Journal of Immunology, 125, 1312–17.

    Google Scholar 

  • Morton, D.L., Eilber, F.R., Malmgren, R.A. & Wood, W.C. (1970). Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery,68, 158–64.

    Google Scholar 

  • Murray, H.W. (1988). Interferon-gamma. The activated macrophage and host defense against microbial challenge. Annals of Internal Medicine,108, 595–608.

    Google Scholar 

  • Murray, H.W., Rubin, B.F. & Rothermel, C.D. (1983). Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-γ is the activating lymphokine. Journal of Clinical Investigation, 72, 1506–10.

    Article  Google Scholar 

  • Nakane, A., Minagawa, T. & Kato, K. (1988). Endogenous tumor necrosis factor (cachectin) is essential to host resistance against (Listeria monocytogenes infection. Infection and Immunity, 56, 2563–9.

    Google Scholar 

  • Nanno, M., Ohwaki, M. & Mutai, M. (1986). Induction by Lactobacillus casei of increase in macrophage colony-forming cells and serum colony-stimulating activity in mice. Japanese Journal of Cancer Reseach, 77, 703–10.

    Google Scholar 

  • Nanno, M., Shimizu, T., Mike, A., Ohwaki, M. & Mutai, M. (1988). Role of macrophages in serum colony-stimulating factor induction by Lactobacillus casei in mice. Infection and Immunity, 56, 357–62.

    Google Scholar 

  • Nathan, C.F. (1983). Mechanisms of macrophage antimicrobial activity. Transac-tions of the Royal Society of Tropical Medicine and Hygiene, 77, 620–30.

    Article  Google Scholar 

  • Nencioni, L., Villa, L., Boraschi, D., Berti, B. & Tagliabue, A. (1983). Natural and antibody-dependent cell-mediated activity against Salmonella typhimurium by peripheral and intestinal lymphoid cells in mice. Journal of Immunology,130, 903–7.

    Google Scholar 

  • Newborg, M.F. & North, R.J. (1980). On the mechanism of T cell-independent anti-Listeria resistance in nude mice. Journal of Immunology, 124, 571–6.

    Google Scholar 

  • Ninnemann, J.L. & Stockland, A.E. (1984). Participation of prostaglandin E in immunosuppression following thermal injury. Journal of Trauma,24, 201–7.

    Article  Google Scholar 

  • North, R. J. (1970). The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection. Journal of Experimental Medicine,132, 521–34.

    Article  Google Scholar 

  • North, R.J. (1974). T cell dependence of macrophage activation and mobilization during infection with Mycobacterium tuberculosis. Infection and Immunity, 10, 66–71.

    Google Scholar 

  • Old, L.J. (1985). Tumor Necrosis Factor (TNF). Science, 230, 630–2.

    Article  Google Scholar 

  • Perdigon, G., Macias, M.E.N., Alvarez, S., Oliver, G. & Ruiz Holgardo, A.A.P. (1986). Effect of perorally administered lactobacilli on macrophage activation in mice. Infection and Immunity, 53, 404–10.

    Google Scholar 

  • Perdigon, G., Macias, M.E.N., Alvarez, S., Oliver, G. & Ruiz Holgardo, A.A.P. (1988). Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei andLactobacillus acidophilus. Immunology, 63, 17–23.

    Google Scholar 

  • Petkus, A.F. & Baum, L.L. (1987). Natural killer cell inhibition of young spherules and endospores of Coccidioides immitis. Journal of Immunology, 139, 3107–11.

    Google Scholar 

  • Rahman, M. (1982). Chest infection caused by Lactobacillus casei ss rhamnosus.British Medical Journal [Clinical Research], 284, 471–2.

    Article  Google Scholar 

  • Roder, J.C., Kiessling, R., Biberfeld, P. & Andersson, B. (1978). Target-effector interaction in the natural killer (NK) cell system. II The isolation of NK cells and studies on the mechanism of killing. Journal of Immunology,121, 2509–17.

    Google Scholar 

  • Ruco, L.P. & Meltzer, M.S. (1978). Macrophage activation for tumor cytotoxicity: Development of macrophage cytotoxic activity required completion of a sequence of short-lived intermediary reactions. Journal of Immunology, 121, 2035–42.

    Google Scholar 

  • Saito, H. (1988). Enhancement of host resistance to bacterial and viral infections by Lactobacillus casei. Bifidobacteria Microflora,7, 1–18.

    Google Scholar 

  • Saito, H., Watanabe, T., Horikawa, Y. & Tado, O. (1980a). Resistance of mice treated with Lactobacillus casei against infections with Serratia marcescens, Klebsiella pneumoniae and Candida albicans. Medicine and Biology (Tokyo), 101, 29–32.

    Google Scholar 

  • Saito, H., Watanabe, T., Horikawa, Y. & Tado, O. (1980b). Protective effects of lactobacilli on experimental Escherichia coli infection. Medicine and Biology (Tokyo), 101, 61–4.

    Google Scholar 

  • Saito, H., Watanabe, T. & Horikawa, Y. (1981a). Enhanced resistance of Lactobacillus against the opportunistic infection in mice. Medicine and Biology (Tokyo), 102, 309–14.

    Google Scholar 

  • Saito, H., Tomioka, H. & Sato, K. (1981b). Enhanced resistance of Lactobacillus casei against Listeria infection in mice. Medicine and Biology (Tokyo), 102, 273–7.

    Google Scholar 

  • Saito, H., Watanabe, T. & Horikawa, Y. (1982a). Protective effects of a Lactobacillus preparation, LC-9018, on the experimental Pseudomonas aeruginosa infection in mice. Medicine and Biology (Tokyo), 104, 283–7.

    Google Scholar 

  • Saito, H., Sato, K. & Tomioka, H. (1982b). Enhanced resistance of LC-9018 against Listeria infection in mice. Medicine and Biology (Tokyo), 104, 171–5.

    Google Scholar 

  • Saito, H., Nagashiman, K. & Tomioka, H. (1983). Effects of bacterial immunopotentiators, LC 9018 and OK-432, on the resistance against Mycobacterium intracellulare infection in mice. Hiroshima Journal of Medical Sciences, 32, 145–8.

    Google Scholar 

  • Saito, H., Watanabe, T., Kitagawa, T. & Asano, K. (1985). Protective effects of bacterial immunostimulants, OK-432 and LC 9018, on Pseudomonas aeruginosa infection in tumor-bearing mice. Hiroshima Journal of Medical Sciences, 34, 459–62.

    Google Scholar 

  • Saito, H., Watanabe, T. & Horikawa, Y. (1986). Effects of Lactobacillus casei on Pseudomonas aeruginosa infection in normal and dexamethasone-treated mice. Microbiology and Immunology, 30, 249–59.

    Google Scholar 

  • Saito, H., Tomioka, H. & Nagashima, K. (1987). Protective and therapeutic efficacy of Lactobacillus casei against experimental murine infections due to Mycobacterium fortuitum complex. Journal of General Microbiology, 133, 2843–51.

    Google Scholar 

  • Sato, K. (1984). Enhancement of most resistance against Listeria infection by Lactobacillus casei: Role of macrophages. Infection and Immunity, 44, 445–51.

    Google Scholar 

  • Sato, K. Saito, H. & Tomioka, H. (1988a). Enhancement of most resistance against Listeria infection by Lactobacillus casei: Activation of liver macrophages and peritoneal macrophages by Lactobacillus casei. Microbiology and Immunology,32, 689–98.

    Google Scholar 

  • Sato, K. Saito, H., Tomioka, H. & Yokokura, T. (1988b). Enhancement of most resistance against Listeria infection by Lactobacillus casei: Efficacy of cell wall preparation of Lactobacillus casei. Microbiology and Immunology 32, 1189–1200.

    Google Scholar 

  • Shellam, G.R., Allan, J.E., Papadimitriou, J.M. & Bancroft, G.J. (1981). Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proceedings of the National Academy of Science USA, 78, 5104–8.

    Article  Google Scholar 

  • Smith, K.A. (1988). Interleukin-2: Inception, impact, and implications. Science, 240, 1169–76.

    Article  Google Scholar 

  • Sorrell, T.C., Lehrer, R.I. & Cline, M.J. (1978). Mechanism of nonspecific macrophage-mediated cytotoxicity: Evidence for lack of dependence upon oxygen. Journal of Immunology, 120, 347–52.

    Google Scholar 

  • Sussman, J.I., Baron, E.J., Goldberg, S.M., Kaplan, M.H. & Pizzarello, R.A. (1986). Clinical manifestations and therapy of Lactobacillus endocarditis: Report of a case and review of the literature. Reviews of Infectious Diseases, 8, 771–6.

    Article  Google Scholar 

  • Swartzberg, J.E., Krahenbuhl, J.L. & Remington, J.S. (1975). Dichotomy between macrophage activation and degree of protection against Listeria onocytogenes and Toxoplasma gondii in mice stimulated with Corynebacterium parvum. Infection and Immunity, 12, 1037–43.

    Google Scholar 

  • Tatsukawa, K., Mitsuyama, M., Takeya, K. & Nomoto, K. (1979). Differing contribution of polymorphonuclear cells and macrophages to protection of mice against Listeria monocytogenes and Pseudomonas aeruginosa. Journal of General Microbiology, 115, 161–6.

    Google Scholar 

  • Tomioka, H., Sato, K. & Saito, H. (1990). Combined effect of ofloxacin with Lactobacillus casei against Mycobacterium fortuitum infection induced in mice. Antimicrobial Agents and Chemotherapy, 34, 632–6.

    Google Scholar 

  • Valone, S.E., Rich, E.A., Wallis, R.S. & Ellner, J.J. (1988). Expression of tumor necrosis factor in vitro by human mononuclear phagocytes stimulated with whole Mycobacterium bovis BCG and mycobacterial antigens. Infection and Immunity, 56, 3313–15.

    Google Scholar 

  • Winchurch, R.A. & Munster, A.M. (1980). Post-tramatic activation of suppressor cells. Journal of Reticuloendothelial Society, 27,83–8.

    Google Scholar 

  • Wing, E.J., Ampel, E.M., Waheed, A. & Shadduck, R.K. (1985). Macrophage colony-stimulating factor (M-CFS) enhances the capacity of murine macrophages to secrete oxygen reduction products. Journal of Immunology, 135,2052–6.

    Google Scholar 

  • Wolfe, J.H.N., Saporoschetz, I., Young, A.E., O’Connor, N.E. & Mannick, J.A. (1981). Suppressive serum, suppressive lymphocytes, and death from burns. Annals of Surgery, 193, 513–20.

    Google Scholar 

  • Woodruff, M.F.A. & Dunbar, N. (1973). The effect of Corynebacterium parvum and other reticuloendothelial stimulants on transplanted tumours in mice. In Immunopotentiation (A Ciba Foundation Symposium 18 (new series)),ed. P. Medawar, Elsevier Excerpta Medica, Amsterdam, The Netherlands, pp. 287–303.

    Chapter  Google Scholar 

  • Woods, G.L. & Washington, J.A. II. (1987). Mycobacteria other than Mycobacterium tuberculosis: Review of microbiological and clinical aspects. Reviews of Infectious Diseases, 9, 275–94.

    Article  Google Scholar 

  • Yamada, Y., Jidoi, J., Saito, H. & Tomioka, H. (1988). Changes in the function of macrophages after thermal injury and effect of Lactobacillus casei on function of macrophages. Journal of the Japanese Association for Infectious Diseases, 62, 557–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Tomioka, H., Saito, H. (1992). Lactic Acid Bacteria in the Support of Immuno-compromised Hosts. In: Wood, B.J.B. (eds) The Lactic Acid Bacteria Volume 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3522-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3522-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-85166-720-8

  • Online ISBN: 978-1-4615-3522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics