Skip to main content

Subunit Assembly and Glycosylation of Mammalian Brain Acetylcholinsterase

  • Chapter
Multidisciplinary Approaches to Cholinesterase Functions

Abstract

Mammalian acetylcholinesterase (AChE) exists in brain as globular tetrameric form (G4 form) of which approximately 80% are amphiphilic membrane bound and about 20% are hydrophilic non-membrane bound enzyme. (for review see Massoulié and Toutant, 1988). The amphiphilic membrane bound G4 form consists of two pairs of catalytic subunits. In one of the two pairs, the catalytic subunits are thought to be linked together by one disulfide bond which is located near the C-terminus. In the other pair, the catalytic subunits are each linked through the same C-terminal disulfide bonds to a structural subunit of approximately 20 kDa in molecular mass which carries the hydrophobic membrane anchor (Gennari et al., 1987; Inestrosa et al., 1987; Roberts et al., 1991; Heider and Brodbeck, 1992). On the other hand, AChE from mammalian erythrocytes consists of two disulfide linked catalytic subunits (G2 form) which are membrane bound through a glycosyl phosphatidylinositol (GPI) moiety covalently attached to the C-terminus of each subunit (for review see Silman and Futerman, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bon, S., Cartaud, J., and Massoulié, J., 1978, Dumbbell-shaped associations of tailed Electrophorus acetylcholinesterase molecules, Mol. Biol. Rep. 4:61.

    Article  PubMed  CAS  Google Scholar 

  • Bon, S., Chang, J.-Y., and Strosberg, A.D., 1986, Identical N-terminal peptide sequences of asymmetric forms and of amphiphilic low-salt-soluble and detergent-soluble dimers of Torpedo acetylcholinesterase: comparison with bovine acetylcholinesterase, FEBS Lett. 209:206.

    Article  PubMed  CAS  Google Scholar 

  • Bon, S., Méflah, K., Musset, F., Grassi, J., and Massoulié, J., 1987, An immunoglobulin M monoclonal antibody recognizing a subset of acetylcholinesterase molecules from electric organs of Electrophorus and Torpedo,belongs to the HNK-1 anti-carbohydrate family, J. Neurochem. 49:1720.

    Article  PubMed  CAS  Google Scholar 

  • Brodbeck, U., Gentinetta, R., and Ott, P., 1983, Purification by affinity chromatography of red cell membrane acetylcholinesterase, in: “Membrane Proteins. A Laboratory Manual,” A. Azzi, U. Brodbeck, and P. Zahler, eds, Springer-Verlag, Berlin.

    Google Scholar 

  • Chhajlani, V., Derr, D., Earles, B., Schmell, E., and August, T., 1989, Purification and partial amino acid sequence analysis of human erythrocyte acetylcholinesterase, FEBS Leu. 247:279.

    Article  CAS  Google Scholar 

  • Doctor, B.P., Chapman, T.C., Christner, C.E., Deal, C.D., De la Hoz, D.M., Gentry, M.K., and Wolf, A.D., 1990, Complete amino acid sequence of fetal bovine serum acetylcholinesterase and its comparison in various regions with other cholinesterases, FEBS Lett. 266:123.

    Article  PubMed  CAS  Google Scholar 

  • Dudai, Y., Herzberg. M., and Silman, I., 1973, Molecular structures of acetylcholinesterase from electric organ tissue of the electric eel, Proc. Natl. Acad. Sci. USA 70:2473.

    Article  PubMed  CAS  Google Scholar 

  • Fuentes, M.E., and Inestrosa, N.C.. 1988, Characterization of a tetrameric G4 form of acetylcholinesterase from bovine brain: a comparison with the dimeric G2 form of the electric organ, Mol. Cell. Biochem. 81:53.

    Article  PubMed  CAS  Google Scholar 

  • Fuentes, M.E., Rosenberry, T.L., and Inestrosa, N.C., 1988, A 13 kDa fragment is responsible for the hydrophobic aggregation of brain G4 acetylcholinesterase, Biochem. J. 256:1047.

    PubMed  CAS  Google Scholar 

  • Gennari, K., Brunner, J., and Brodbeck, U., 1987, Tetrameric detergent-soluble acetylcholinesterase from human caudate nucleus: subunit composition and number of active sites, J. Neurochem. 49:460.

    Article  Google Scholar 

  • Heider, H., and Brodbeck, U., 1992, Monomerization of tetrameric bovine caudate nucleus acetylcholinesterase, Biochem. J. 281:279.

    PubMed  CAS  Google Scholar 

  • Heider, H., Litynski, P., Stieger, S., and Brodbeck, U., 1991, Comparative studies on the primary structure of acetylcholinesterases from bovine caudate nucleus and bovine erythrocytes, Cell. Mol. Neurobiol. 11:105.

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa, N.C., Roberts, W.L., Marshall, T.L., and Rosenberry, T.L., 1987, Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues, J. Biol. Chem. 262:4441.

    PubMed  CAS  Google Scholar 

  • Laemmli, U.K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680.

    Article  PubMed  CAS  Google Scholar 

  • Liao, J., Heider, H., Sun, M.-C., and Brodbeck, U., 1992, Different glycosylation in acetylcholinesterases from mammalian brain and erythrocytes, J. Neurochem. 58:1230.

    Article  PubMed  CAS  Google Scholar 

  • Liao, J., Heider, H., Sun, M.-C., Stieger, S., and Brodbeck, U., 1991, The monoclonal antibody 2G8 is carbohydrate-specific and distinguishes between different forms of vertebrate cholinesterases, Eur. J. Biochem. 198:59.

    Article  PubMed  CAS  Google Scholar 

  • Massoulié, J., and Toutant, J.-P., 1988. Vertebrate cholinesterases: structure and types of interaction, in: “Handbook of Experimental Pharmacology,” Vol. 86, V.P. Whittaker, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Méflah, K., Bernard, S., and Massoulié, J., 1984, Interactions with lectins indicate differences in the carbohydrate composition of the membrane-bound enzymes acetylcholinesterase and 5’nucleotidase in different cell types, Biochimie 66:59.

    Article  PubMed  Google Scholar 

  • Musset, F., Frobert, Y., Grassi, J., Vigny, M., Boulla, G., Bon, S., and Massoulié, J., 1987, Monoclonal antibodies against acetylcholinesterase from electric organs of Electrophorus and Torpedo,Biochimie 69:147.

    Article  PubMed  CAS  Google Scholar 

  • Ploug, M., Jensen, A.L., and Barkholt, V., 1989, Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfat-polyacrylamide gel electrophoresis: application to peptide mapping of human complement component C3, Anal. Biochem. 181:33.

    Article  PubMed  CAS  Google Scholar 

  • Rachinsky, T.L., Camp, S., Li, Y., Ekström, T.J., Newton, M., and Tylor, P., 1990, Molecular cloning of mouse acetylcholinesterase: tissue distribution of alternatively spliced mRNA species, Neuron 5:317.

    Article  PubMed  CAS  Google Scholar 

  • Rakonczay, Z., and Brimijoin, S., 1988, Monoclonal antibodies to human brain acetylcholinesterase: properties and applications, Cell. Mol. Neurobiol. 8:85.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, W.L., Doctor, B.P., Foster J.D., and Rosenberry, T.L., 1991, Bovine brain acetylcholinesterase primary sequence involved in intersubunit disulfide linkages, J. Biol. Chem. 266:7481.

    PubMed  CAS  Google Scholar 

  • Rotundo, R.L., 1984, Asymmetric acetylcholinesterase is assembled in the Golgi apparatus, Proc. Natl. Acad. Sci. USA 81:479.

    Article  PubMed  CAS  Google Scholar 

  • Silman, I., and Futerman, A.H., 1987, Modes of attachment of acetylcholinesterase to the surface membrane, Eur. J. Biochem. 170:11.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, K., Gentinetta, R., and Brodbeck, U., 1982, An amphiphile dependent form of human brain caudate nucleus acetylcholinesterase: purification and properties, J. Neurochem. 39:1050.

    Article  PubMed  CAS  Google Scholar 

  • Soreq, H., and Prody, C.A., 1989, Sequence similarities between human acetylcholinesterase and related proteins: putative implications for therapy of anticholinesterase intoxication, in: “Progress in Clinical and Biological Research.” Vol. 289, R. Rein and A. Golombek, eds, Alan R. Liss, New York.

    Google Scholar 

  • Soreq, H., Ben-Aziz, R., Prody, C.A., Seidman, S., Gnatt, A., Neville, L., Lieman-Hurwitz, J., LevLehman, E., Ginzberg, D., Lapidot-Lifson, A., and Zakut, H., 1990, Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G+G-rich attenuating structure, Proc. Natl. Acad. Sci. USA 87:9688.

    Article  PubMed  CAS  Google Scholar 

  • Stieger, S., and Brodbeck, U., 1988, Assay and purification of PI-specific phospholipase C from Bacillus cereus using commercially available phospholipase C, in: “Post-translational Modification of Proteins by Lipids”, U. Brodbeck and C. Bordier, eds, Springer-Verlag, Berlin.

    Google Scholar 

  • Velar, B., Grosfeld, H., Kronman, C., Leitner, M., Gozes, Y., Lazar, A., Flashner, Y., Marcus, D., Cohen, S., and Shafferman, A., 1991, The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase - expression of acetylcholinesterase Cys-580->Ala Mutant, J. Biol. Chem. 266:23977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brodbeck, U., Liao, J. (1992). Subunit Assembly and Glycosylation of Mammalian Brain Acetylcholinsterase. In: Shafferman, A., Velan, B. (eds) Multidisciplinary Approaches to Cholinesterase Functions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3046-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3046-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6328-6

  • Online ISBN: 978-1-4615-3046-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics