Skip to main content

Modeling of Coronary Capillary Flow

  • Chapter
Interactive Phenomena in the Cardiac System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 346))

Abstract

The coronary capillary flow is analyzed theoretically based on the laws of continuum mechanics. The capillary is considered as a long, elastic and permeable vessel loaded externally by tissue pressure. It is subjected to periodic length changes, together with adjacent myocytes. Capillary flow is driven by arteriolar-venular pressure differences. Ultrafiltration due to transmural hydrostatic and osmotic pressure gradients is included in the model. Consideration of mass conservation leads to a nonlinear flow equation. The results show that under stable physiological conditions ultrafiltration is of minor importance. The analysis of untethered capillaries predicts regional differences in capillary flow. In all regions, but more so in the subendocardium, capillaries undergo significant periodic volume changes, giving rise to intramyocardial pumping. In the deeper layers, capillary wall elasticity is of major importance. In the subepicardium, the possible capillary length-changes with adjacent myocytes tend to enhance systolic/diastolic volume differences. The predicted patterns of the overall capillary flow in the left ventricular (LV) wall are in good qualitative agreement with measured coronary phasic flow, showing systolic retrograde arterial inflow, accelerated venal outflow, and diastolic rapid filling accompanied by venal retrograde flow. Analysis of the flow in tethered capillary shows significant effect of the collagen attachments between the surrounding myocytes and the capillary wall. The advantage of the continuum analysis is demonstrated in the present study by its ability to elucidate and evaluate the role of flow controlling mechanisms and their complex interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chilian WM, Marcus ML. Phasic coronary blood flow velocity in intramural and epicardial coronary arteries. Circ Res 1982; 50: 775–781

    Article  PubMed  CAS  Google Scholar 

  2. Hoffman JIE, Spaan JAE. Pressure flow relations in coronary circulation. Physiological Rev 1990; 70: 331–390

    CAS  Google Scholar 

  3. Hoffman JIE, Baer RW, Mandey FL, Messina LM. Regulation of transmural myocardial blood flow. ASME Trans J Biomechan Eng 1985; 107: 3–9

    Google Scholar 

  4. Levy BI, Samuel JL, Tedgui A, Kotelianski V, Marotte F, Poitevin P, Chadwick RS. Intramyocardial blood volume in the left ventricle of rat arrested hearts. In: Brun P, Chadwick RS, Levy BI (eds) Cardiovascular Dynamics and Models (Colloque INSERM 183). INSERM: Paris, pp 65–71, 1988

    Google Scholar 

  5. Spaan JAE. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 1985; 56: 293–309

    Article  PubMed  CAS  Google Scholar 

  6. Dinnar U. Interaction between intramyocardial pressure and transcapillary exchange: A possible control of coronary circulation. In: Sideman S, Beyar R (eds) Simulation and Control of the Cardiac System, CRC Press: NY, pp 109–130, 1987

    Google Scholar 

  7. Schmid-Schonbein GW, Lee SY, Sutton D. Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: application to pressure and flow transients. Biorheology 1989; 26: 215–227

    PubMed  CAS  Google Scholar 

  8. Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy BI. Phasic regional myocardial inflow and outflow: comparison of theory and experiments. Am J Physiol 1990; 258: H1687–H1698.

    PubMed  CAS  Google Scholar 

  9. Bassingthwaighte JB, Yipintsoi T, Harvey RB. Microvasculature of the dog left ventricle myocardium. Microvasc Res 1974; 7: 729–249

    Article  Google Scholar 

  10. Berne RM, Rubio R. Coronary circulation. In: Handbook of Physiology - The Heart (section 2/1). Am Physiology Soc:MD, 1979; pp 873–952

    Google Scholar 

  11. Caulfiled JB, Borg TK. The collagen network of the heart. Lab Invest 1979; 40: 364–372

    Google Scholar 

  12. Ellis CG, Mathieu-Costello O, Potter RF, MacDonald IC, Groom AC. Effect of sarcomere length on total capillary length in skeletal muscle: In vivo evidence for longitudinal stretching of capillaries. Microvasc Res 1990; 40: 63–72

    Article  PubMed  CAS  Google Scholar 

  13. Poole DC, Batra S, Mathieu-Costello O, Rakusan K. Capillary geometrical changes with fiber shortening in rat myocardium. Circ Res 1992; 70: 697–706

    Article  PubMed  CAS  Google Scholar 

  14. Chadwick RS. Slow viscous flow inside a torus. The resistance of small tortuous blood vessels. Quart Appl Math 1985; 43: 317–323

    Google Scholar 

  15. Lipowsky HH, Kovalcheck S, Zweifach BW. The distribution of blood rheological parameters in the microcirculation of cat mesentery. Circ Res 1978; 43: 738–749

    Article  PubMed  CAS  Google Scholar 

  16. Skalak TC, Schmid-Schonbein GW. Viscoelastic properties of microvessels in rat spinotrapezius muscle. ASME Trans J Biomech Eng 1986; 108: 193–200

    Article  CAS  Google Scholar 

  17. Fibich G, Lanir Y, Liron N. Mathematical model of blood flow in a coronary capillary. Am J Physiol 1993; accepted for publication

    Google Scholar 

  18. Ono T, Shimohara Y, Okada K, Irino S. Scanning electron microscopic studies on microvascular architecture on human coronary vessels by corrosion casts: Normal and focal necrosis. Scanning Electron Microvasc 1986; 1: 263–270

    Google Scholar 

  19. Boseck GL. Transcapillary fluid exchange in rat spinotrapezius muscle. Ph.D. Thesis. Univ of California: La Jolla, CA, 1983

    Google Scholar 

  20. Baldwin A, Gore RS. Simultaneous measurement of capillary distensibility and hydraulic conductance. Microvasc Res 1989; 38: 1–22

    Article  PubMed  CAS  Google Scholar 

  21. Ruch TC, Patton HD. Physiology and Biophysics. WB Saunders Co: Philadelphia, 1966

    Google Scholar 

  22. Hargens AR. Interstitial fluid pressure and lymph flow. In: Skalak R, Chien S (eds) Handbook of Bioengineering. McGraw-Hill:NY, pp 19.1–19.25, 1987

    Google Scholar 

  23. Tillmanns H, Steinhausen M, Leinberger H, Thederan H, Kubler W. Pressure measurements in the terminal vascular bed of the epimyocardium of rats and cats. Circ Res 1981; 49: 1202–1211

    Article  PubMed  CAS  Google Scholar 

  24. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol (Heart Circ Physiol 25) 1989; 256: H383–H390

    Google Scholar 

  25. Klassen GA, Armour JA, Garner JB. Coronary circulatory pressure gradients. Can J Physiol Pharmacol 1987; 65: 520–531

    Article  PubMed  CAS  Google Scholar 

  26. Solti F, Jellinek H. Cardiac Lymph Circulation and Cardiac Disorders. Akademiai Kiado: Budapest, 1989

    Google Scholar 

  27. Nevo E, Lanir Y. Structural finite deformation model of the left ventricle during diastole and systole. ASME Trans J Biomech Eng 1989; 3: 342–348

    Article  Google Scholar 

  28. Kresh YJ. Myocardial modulation of coronary circulation. Am J Phsyiol 1989; 257: H1934–H1935

    Google Scholar 

  29. Borg TK, Caulfield JB. The collagen matrix of the heart. Federation Proc 1981; 40: 2037–2041

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fibich, G., Lanir, Y., Liron, N., Abovsky, M. (1993). Modeling of Coronary Capillary Flow. In: Sideman, S., Beyar, R. (eds) Interactive Phenomena in the Cardiac System. Advances in Experimental Medicine and Biology, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2946-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2946-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6280-7

  • Online ISBN: 978-1-4615-2946-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics