Skip to main content

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 282))

Abstract

Laminar-to-turbulent transition can occur through several mechanisms, such as in linear instability, bypass transition, Gortler instability, and cross-flow instability. For more discussion of this issue see Bushnell et al. (1988), Gortler (1965), Dagenhart et al. (1989, 1990), and Saric and Benmalek (1991). The most widely used tool for predicting transition is the so-called e N method, which is discussed in chapter 3. The e N method is based on the linear stability theory, which is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bechert, D. and Pfizenmaier, E., 1975, “On Wave-Like Perturbations in a Free Jet Travelling Faster than the Mean Flow in the Jet,” J. Fluid Mech., vol. 72, p. 341.

    Article  ADS  Google Scholar 

  • Bushnell, D.M., Malik, M.R., and Harvey, W.D., 1988, “Transition Predictions in External Flows Via Linear Stability Theory,” IUTAM Symposium Transonicom II, Gottingen, West Germany, May 24–27, 1988.

    Google Scholar 

  • Dagenhart, J.R., Stack, J.P., Saric, W.S., and Mousseux, M.C., 1989, “Crossflow-Vortex Instability and Transition on a 45 deg Swept Wing,” AIAA Fluid Dynamics, Plasma Dynamics, and Lasers Conference, 20th, Buffalo, NY, Feb. 12–14, 1989.

    Google Scholar 

  • Dagenhart, J.R., Saric, W.S., Hoos, J.A., and Mousseux, M.C., 1990, “Experiments on Swept-Wing Boundary Layers in Laminar-Turbulent Transition,” Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11–15, 1989. Springer-Verlag, Berlin and New York.

    Google Scholar 

  • Gortler, H., 1965, “Dreidimensionales zur Stabilitäts Theorie Laminarer Grenzschichten,” ZAMM, vol. 35, pp. 362–363.

    Google Scholar 

  • Jackson, T. L. and Grosch, C.E. 1989, “Inviscid spatial stability of a compressible mixing layer,” J. Fluid Mech., vol. 208, p. 609.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lesieur, M., 1990, “Turbulence in Fluids, 2nd edition, Kluwer Academic Publishers, Dordrecht/Boston/London.

    Book  MATH  Google Scholar 

  • Lin, C.C., 1955,The Theory of Hydrodynamic Stability, Cambridge University Press.

    MATH  Google Scholar 

  • Mack, L.M., 1965, “Computation of the Stability of the Laminar Boundary Layer,” Methods in Computation Physics (B. Alder, S. Fernback, and M. Rotenberg, eds.), vol. 4, pp. 247–299, Academic, New York.

    Google Scholar 

  • Mack, L.M., 1977, “Transition and Laminar Instability,” Jet Propulsion Laboratory Publication 77–15, Pasadena, California.

    Google Scholar 

  • Mankbadi, R.R. and Liu, J.T.C., 1981, “A Study of the Interactions Between Large-Scale Coherent Structure and Fine-Grained Turbulence in a Round Jet,” Philos. Trans. Roy. Soc. London Ser. A vol. 298, pp. 241–602.

    Google Scholar 

  • Michalke, A., 1971, “Instabilitat eines Kompressiblen rundem Freistahls inter Beruck-sichtingung des Einflusses der Strahlgrenzschichtdicke,” Z. Flugwiss, vol. 19, p. 317.

    Google Scholar 

  • Rayleigh, Lord, 1913, “On the Stability of the Laminar Motion of an Inviscid Fluid,” Scientific Papers, vol. 6, pp. 197–204, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Sandham, N. D. and Reynolds, W.C. 1989, “The compressible mixing layer: linear theory and direct simulation,” AIAA Paper No. 89–0371.

    Google Scholar 

  • Saric, W.S. and Benmalek, A., 1991, “Gortler Vortices With Periodic Curvature,” Boundary Layer Stability and Transition to Turbulence. Proceedings of the Symposium, ASME & JSEM Joints Fluid Engineering Conference, 1st, Portland, OR, Feb. 23–27, 1991.

    Google Scholar 

  • Schlichting, H., 1979, Boundary Layer Theory, Seventh Edition, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Squire, H.B., 1933, “On the Stability for Three-Dimensional Disturbances of Viscous Flow Between Parallel Walls,” Proc. R. Soc. Lond. A„ vol. 142, pp. 621–628.

    Article  ADS  MATH  Google Scholar 

  • Tollmien, W., 1931, “Uber Entstehung der Turbulenz,” I. Mitteilung Nachr. Ges. Wiss. Gottinyen, Math. Phys. Klasse, 21–44 (1929), NACA TM-609.

    Google Scholar 

  • Zhuang, M., Kubota, T. and Dimotakis, P. E. 1988, “On the instability of inviscid compressible free shear layers,” AIAA Paper No. 88–3538.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mankbadi, R.R. (1994). Linear Stability Theory. In: Transition, Turbulence, and Noise. The Springer International Series in Engineering and Computer Science, vol 282. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2744-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2744-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9481-5

  • Online ISBN: 978-1-4615-2744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics