Skip to main content

Satellite Antennas

  • Chapter
Antenna Handbook
  • 920 Accesses

Abstract

The design of antennas for satellite applications differs in several respects from other applications. An antenna radiation pattern varies from omnidirectional to highly directional. It can be fixed or changed to accommodate specific needs as they arise. A satellite antenna must be designed to withstand the dynamic mechanical and thermal stresses for the satellite. The design constraints imposed by the satellite on size, shape, and weight are also important factors in design consideration. As the requirements on the side lobes and cross polarization become more stringent, the interference on antenna performance due to the presence of the satellite body, solar cell panel, and other antenna systems cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Pritchard, “Satellite communication-an overview of the problems and programs,” Proc. IEEE,vol. 65, no. 3, pp. 294–307, March 1977.

    Article  MathSciNet  Google Scholar 

  2. J. W. Duncan, “Maximum off-axis gain of pencil beams,” Proc. IEEE (letters), vol. 57, pp. 1791–1792, October 1969.

    Google Scholar 

  3. N. Amitay, V. Galindo, and C. T. Wu, Theory and Analysis of Phased Array Antennas, New York: Wiley-Interscience, pp. 6–8, 1972.

    Google Scholar 

  4. Y. T. Lo and S. W. Lee, “Affine transformation and its application to antenna arrays,” IEEE Trans. Antennas Propag., vol. AP-13, no. 6, pp. 890–896, November 1965.

    Article  Google Scholar 

  5. A. A. Oliner and G. H. Knittel, eds., Phased Array Antennas, Dedham: Artech House, pp. 68–82, 1972.

    Google Scholar 

  6. E. D. Sharp, “A triangular arrangement of planar array elements that reduces the number needed,” IEEE Trans. Antennas Propag., vol. AP-9, pp. 126–129, March 1961.

    Article  Google Scholar 

  7. Y. T. Lo, “A mathematical theory of antenna arrays with randomly spaced elements,” IEEE Trans. Antennas Propag., vol. AP-15, pp. 231–235, March 1967.

    Article  Google Scholar 

  8. M. Born and E. Wolf, Principles of Optics, New York: Pergamon Press, 1964, pp. 203–232.

    Google Scholar 

  9. S. Silver, ed., Microwave Antenna Theory and Design, New York: McGraw-Hill Book Company, 1949, pp. 389–412.

    Google Scholar 

  10. J. J. Lee, “Numerical methods make lens antennas practical,” Microwaves, pp. 81–84, September 1982.

    Google Scholar 

  11. D. Waineo, “Lens designed for arbitrary illumination,” Proc. of 1976 IEEE AP-S Symp.,p. 476, 1976.

    Google Scholar 

  12. F. G. Friedlander, “A dielectric lens aerial for wide-angle beam scanning,” J. Inst. Electr. Eng., vol. 93, pt. 3A, pp. 658–662, 1946.

    Google Scholar 

  13. J. A. Jenkins and H. E. White, Fundamentals of Optics, chapter 9, New York: McGraw-Hill Book Company, 1957, p. 154.

    MATH  Google Scholar 

  14. D. H. Shinn, “The design of a zoned dielectric lens for wide-angle scanning,” Marconi Rev., no. 117, p. 37, 1953.

    Google Scholar 

  15. L. Young, “Tables for cascaded homogeneous quarter-wave transformers,” IRE Trans. Microwave Theory Tech., vol. 7, pp. 233–237, 1959; vol. 8, pp. 243–244, 1960.

    Google Scholar 

  16. L. Young, “Synthesis of multiple antireflection films over a prescribed frequency band,” J. Opt. Soc. Am., vol. 51, pp. 967–974, 1961.

    Article  Google Scholar 

  17. A. F. Harvey, “Optical techniques at microwave frequencies,” Proc. Inst. Electr. Eng. (London), C106, pp. 141–157, 1959.

    Google Scholar 

  18. R. H. Garnham, “Optical and quasi-optical transmission techniques and component systems for millimeter wavelengths,” RRE Rep. no. 3020, Royal Radar Establishment, Malvern, England, March 1958.

    Google Scholar 

  19. P. G. Ingerson and W. C. Wong, “Focal region characteristics of offset-fed reflectors,” IEEE AP-S Intl. Symp. Dig., pp. 121–123, June 1974.

    Google Scholar 

  20. T. Chu and R. H. Turrin, “Depolarization properties of offset reflector antenna,” IEEE Trans. Antennas Propag., vol. AP-21, pp. 339–345, May 1973.

    Article  Google Scholar 

  21. J. Ruze, “Lateral-feed displacement in a paraboloid,” IEEE Trans. Antennas Propag., vol. AP-13, pp. 660–665, September 1965.

    Article  Google Scholar 

  22. S. W. Lee and Y. Rahmat-Samii, “Simple formulas for designing an offset multibeam parabolic reflector,” IEEE Trans. Antennas Propag., vol. AP-29, no. 3, p. 472, May 1981.

    Article  Google Scholar 

  23. J. Ruze, “Antenna tolerance theory-a review,” Proc. IEEE,vol. 54, pp. 633–640, April 1966.

    Article  Google Scholar 

  24. Y. Rahmat-Samii, “An efficient computational method for characterizing the effects of random surface errors on the average power pattern of reflectors,” IEEE Trans. Antennas Propag., vol. AP-31, pp. 92–98, January 1983.

    Article  Google Scholar 

  25. L. R. Whicker, Ferrite Control Components, Volume 2,Dedham: Artech House, 1974.

    Google Scholar 

  26. T. M. Smith, E. W. Mathews, and C. R. Boyd, “C-band variable power divider and variable phase shifter development,” Proc. AIAA 9th Communications Satellite Systems Conf., pp. 693–697, March 1982.

    Google Scholar 

  27. J. L. Janken, W. J. English, and D. F. DiFonzo, “Radiation from `multimode’ reflector antennas,” IEEE G-AP Intl. Symp., pp. 306–309, August 1973.

    Google Scholar 

  28. Y. Hwang, A. Tsao, and C. C. Han, “Uniform analysis of reflector antenna for satellite application,” 1983 IEEE AP-S Intl. Symp., vol. 1, pp. 88–90.

    Google Scholar 

  29. J. E. Heller and J. B. Cruz, Jr., “An algorithm for minimax parameter optimization,” Automatica, vol. 8, New York: Pergamon Press, 1972, pp. 325–335.

    Google Scholar 

  30. K. Madsen, O. Nielson, H. S. Jacobsen, and L. Thrane, “Efficient Minimax design of networks without using derivatives,” IEEE Trans. on Microwave Theory Tech., vol. MTT-23, pp. 507–512, 1975.

    Article  Google Scholar 

  31. J. R. Mantz and R. F. Harrington, “Computational method for antenna pattern synthesis,” IEEE Trans. Antennas Propag., vol. AP-23, no. 4, pp. 507–512, July 1975.

    Article  Google Scholar 

  32. C. Donn, W. A. Imbriale, and G. G. Wong, “An S-band phased array design for satellite application,” IEEE Intl. Symp. Antennas Propag., pp. 60–63, 1977.

    Google Scholar 

  33. C. Donn, “A new helical antenna design for better on-and-off boresight axial ratio performance,” IEEE Trans. Antennas Propag., vol. AP-28, no. 2, pp. 264–267, March 1980.

    Article  Google Scholar 

  34. A. R. Dion and L. J. Ricardi, “A variable-coverage satellite antenna system,” Proc. IEEE,vol. 59, no. 2, pp. 252–262, February 1971.

    Article  Google Scholar 

  35. L. J. Ricardi, A. J. Simmons, A. R. Dion, L. K. DeSize, and B. M. Potts, “Some characteristics of a communication satellite multiple-beam antenna,” MIT Tech. Note 1975–3, January 1975.

    Google Scholar 

  36. Ford Aerospace & Communications Corporation, Palo Alto, California, “Design for Arabsat C-band communication antenna system.”

    Google Scholar 

  37. P. D. Potter, “A new horn antenna with suppressed side lobes and equal beam-widths,” Microwave J., vol. Vl, pp. 71–78, June 1963.

    Google Scholar 

  38. T. Satoh, “Dielectric-loaded horn antenna,” IEEE Trans. Antennas Propag., vol. AP-20, pp. 199–201, March 1972.

    Article  Google Scholar 

  39. W. J. English, “The circular waveguide step-discontinuity mode transducer,” IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 633–636, October 1973.

    Article  Google Scholar 

  40. J. S. Ajioka and H. E. Harry, Jr., “Shaped beam antenna for earth coverage from a stabilized satellite,” IEEE Trans. Antennas Propag., vol. AP-18, no. 3, pp. 323–327, May 1970.

    Article  Google Scholar 

  41. T. S. Chu, “On the use of uniform circular arrays to obtain omnidirectional patterns,” IRE Trans. Antennas Propag., vol. AP-7, pp. 436–438, October 1959.

    Google Scholar 

  42. V. Galindo and K. Green, “A near-isotropic circular polarized antenna for space vehicles,” IEEE Trans. Antennas Propag., vol. AP-13, no. 6, pp. 872–877, November 1965.

    Article  Google Scholar 

  43. W. F. Croswell, C. M. Knop, and D. M. Hatcher, “A dielectric-coated circumferential slot array for omnidirectional coverage at microwave frequencies,” IEEE Trans. Antennas Propag., vol. AP-15, no. 6, pp. 722–727, November 1967.

    Article  Google Scholar 

  44. R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill Book Company, 1961, pp. 245–250.

    Google Scholar 

  45. P. H. Pathak and R. G. Kouyoumjian, “An analysis of the radiation from apertures in surfaces by the geometrical theory of diffraction,” Proc. IEEE, vol. 62, pp. 1438–1447, November 1974.

    Article  Google Scholar 

  46. J. R. Wait, Electromagnetic Radiation From Cylindrical Structures, New York: Pergamon Press, 1959.

    MATH  Google Scholar 

  47. G. E. Stewart and K. E. Gorden, “Mutual admittance for axial rectangular slots in a large conducting cylinder,” IEEE Trans. Antennas Propag., vol. AP-19, pp. 120–122, January 1971.

    Article  Google Scholar 

  48. S. W. Lee, “Mutual admittance of slots on a cone: solution by ray techniques,” IEEE Trans. Antennas Propag., vol. AP-26, no. 6, pp. 768–773, November 1978.

    Google Scholar 

  49. W. S. Gregorwich, “An electronically despun array flush-mounted on a cylindrical spacecraft,” IEEE Trans. Antennas Propag., vol. AP-22, no. 1, January 1974.

    Google Scholar 

  50. W. L. Barrow, L. J. Chu, and J. J. Jansen, “Biconical electromagnetic horns,” Proc. IRE,pp. 769–779, December 1939.

    Google Scholar 

  51. H. Jasik, ed., Antenna Engineering Handbook, New York: McGraw-Hill Book Company, 1961, pp. 10–13 to 10–14.

    Google Scholar 

  52. C. E. Ryan and L. Peters, Jr., “Evaluation of edge-diffracted fields including equivalent currents for the caustic region,” IEEE Trans. Antennas Propag., vol. AP-17, no. 3, pp. 292–299, May 1969.

    Article  Google Scholar 

  53. N. C. Albertsen, P. Balling, and F. Laursen, “New low-gain S-band satellite antenna with suppressed back radiation,” Sixth Ear. Microwave Conf., Rome, Italy, pp. 14–17, September 1976.

    Google Scholar 

  54. R. F. Harrington and J. R. Mantz, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res., vol. 20, pp. 405–435, 1969.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Van Nostrand Reinhold

About this chapter

Cite this chapter

Han, C.C., Hwang, Y. (1993). Satellite Antennas. In: Lo, Y.T., Lee, S.W. (eds) Antenna Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2638-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2638-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-01594-7

  • Online ISBN: 978-1-4615-2638-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics