Skip to main content

Beam-Forming Feeds

  • Chapter
Antenna Handbook

Abstract

When phased arrays were relatively simple, antenna subassemblies were easy to identify as feed networks, phasors, and radiating aperture. Modern phased arrays, however, have become quite complex, with a wide variety of designs and physical implementations depending on the particular application. With simple phased arrays the feed network was a passive network of branching transmission lines to distribute the power from a single transmitter to each of the radiating elements in the array via the phasors, and, conversely on receive, it combined the power received by each of the radiating elements to the input to a single receiver. Modern phased arrays may have multiple distributed transmitters, multiple distributed preamplifiers, multiple duplexing switches, and multiple simultaneous beam ports, each with its own final receiver. In addition, adaptive arrays may have adaptive control loops distributed throughout the feeding network with a significant amount of signal processing done within the antenna. For these reasons, general categories and general definitions become somewhat ambiguous. However, since generality is necessary to discuss phased arrays in general, an attempt is made to organize feed systems into general categories, and the reader should be aware of the shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. A. Gustafson, “S-band two-dimensional slot array,” Tech. Memo 462,Hughes Aircraft Company, Culver City, California, March 1957.

    Google Scholar 

  2. R. M. Brown, “Performance of an antenna sharing the aperture of a frequency scanned array,” Rep. 8226,Naval Research Lab, Washington, DC, May 1978.

    Google Scholar 

  3. J. Butler and R. Lowe, “Beam forming matrix simplifies design of electronically scanned antenna,” Electron. Design, vol. 9, no. 8, pp. 170–173, April 12, 1961.

    Google Scholar 

  4. R. C. Hansen, Microwave Scanning Antennas, vols. 1, 2, 3, Array Systems, New York: Academic Press, 1966.

    Google Scholar 

  5. W. P. Delaney, “An rf multiple beam forming technique,” IRE Trans. Mil. Electron,pp. 179–186, April 1962.

    Google Scholar 

  6. J. P. Shelton and K. S. Kelleher, “Multiple beams from linear arrays,” IRE Trans, vol. AP-9, pp. 154–161, March 1961.

    Google Scholar 

  7. W. R. Jones and G. F. Van Blaricum, “Multiple-beam forming hybrid networks,” Hughes Aircraft Co., Ground Systems Group, Tech. Memo. No. TP71–14–2,April 7, 1970.

    Google Scholar 

  8. H. J. Moody, “The systematic design of the Butler matrix,” IEEE Trans. Antennas Propag, vol. AP-12, pp. 786–788, November 1964.

    Article  Google Scholar 

  9. J. Blass, “The multidirectional antenna: a new approach to stacked beams,” 1960 IRE Cony. Rec, pt. 1, pp. 48–50, 1960.

    Google Scholar 

  10. J. Matthews and R. L. Walker, Mathematical Methods of Physics, 2nd ed., Menlo Park: Benjamin-Cummings, pp. 152–153, 1970.

    Google Scholar 

  11. G. G. Chadwick, W. Gee, P. T. Lam, and J. L. McFarland, “An algebraic synthesis method for RN 2 multi-beam matrix network,” internal publication of Lockheed Missile and Space Co., Sunnyvale, Calif., 94086. Also in Proc. 1981 Antenna Appl. Symp, Allerton Park, Univ. of Illinois, September 23, 1981.

    Google Scholar 

  12. J. L. McFarland, “The RN 2 multiple beam array family and beam forming matrix,” Proc. 1981 Antenna Appl. Symp, Allerton Park, Univ. of Illinois, September 23–25, 1981.

    Google Scholar 

  13. R. J. Mailloux, “Array techniques for limited-scan applications,” Phys. Sci. Res. Papers, No. 503, AFCRL-72–0421, Air Force Cambridge Research Laboratories, July 19, 1972.

    Google Scholar 

  14. R. J. Mailloux and G. R. Forbes, “Experimental studies of a multiple mode array technique for limited-scan applications,” Phys. Sci. Res. Papers, No. 575, AFCRLTR-73–0686, Air Force Cambridge Research Laboratories, November 6, 1973.

    Google Scholar 

  15. G. T. DiFrancia, “A family of perfect configuration lenses of revolution,” Optica Acta, vol. 1, no. 4, pp. 157–163, February 1955.

    MathSciNet  Google Scholar 

  16. L. J. Chu and M. A. Taggart, “Pillbox antenna,” US Patent No. 2,688,546, May 12, 1945.

    Google Scholar 

  17. M. A. Taggart and E. C. Fine, “Parallel-plate bends,” MIT Radiation Lab Rep. 760, September 5, 1945.

    Google Scholar 

  18. J. S. Ajioka, “The development of an integral mkx iff antenna for low-frequency radar,” Rep. No. 534, US Navy Electronic Lab, San Diego, January 1955.

    Google Scholar 

  19. W. Rotman, “A study of microwave double-layer pillboxes,” AFCRC-TR-54–102, Air Force Cambridge Research Center, Cambridge, Massachusetts, July 1954.

    Google Scholar 

  20. J. S. Ajioka, “A multiple beam forming network using a multimode radial transmission line,”1963 NEREM Cony. Rec

    Google Scholar 

  21. J. S. Ajioka, “A multiple beam forming antenna apparatus,” US Patent No. 3,290,682, December 6, 1966.

    Google Scholar 

  22. J. S. Ajioka and H. A. Uyeda, “Experimental performance of a multimode radial transmission line beam-forming network,” Microwave J, pp. 53–56, December 1968.

    Google Scholar 

  23. J. L. McFarland, “Catenary geodesic lens antenna,” US Patent No. 3,383,691, assigned to Hughes Aircraft Co., May 14, 1968.

    Google Scholar 

  24. S. B. Meyer, “Parallel-plate optics for rapid scanning,” J. Appl. Phys, vol. 18, pp. 221–229, 1947.

    Article  Google Scholar 

  25. W. Rotman and R. F. Turner, “Wide-angle microwave lens for line source applications,” IEEE Trans. Antennas Propag, pp. 623–632, November 1963.

    Google Scholar 

  26. J. Ruze, “Wide-angle metal plate optics,” Proc. IRE, vol. 38, pp. 53–58, January 1950.

    Article  Google Scholar 

  27. H. Gent, “The bootlace aerial,” Royal Radar Establishment J, pp. 47–57, October 1957.

    Google Scholar 

  28. C. M. Rappaport and A. I. Zaghoul, “Optimized three-dimensional lenses for two-dimensional scanning,” IEEE AP-S 1984 Symp. Dig, vol. II, June 25–29, 1984.

    Google Scholar 

  29. R. F. Rinehart, “A solution of the problem of rapid scanning for radar antennae,” J. Appl. Phys,vol. 19, September 1948.

    Google Scholar 

  30. R. K. Luneburg, Mathematical Theory of Optics, Providence: Brown University, pp. 189–213, 1944.

    Google Scholar 

  31. E. C. DuFort and H. A. Uyeda, “A wide-angle scanning optical antenna,” IEEE Trans. Antennas Propag, vol. AP-31, no. 1, p. 60, January 1983.

    Article  Google Scholar 

  32. R. T. Hill, “Phased array feed systems,” in Phased Array Antennas, ed. by A. A. Oliner and G. H. Knittel, Dedham: Artech House, pp. 197–211, April 1972.

    Google Scholar 

  33. J. R. Kahrilas, “HAPDAR—an operational phased array radar,” Proc. IEEE, November 1968.

    Google Scholar 

  34. W. T. Patton, “Limited-scan arrays,” Proc. 1970 Phased Array Antenna Symp, ed. by A. A. Oliner and G. H. Knittel, Dedham: Artech House, pp. 332–343, 1970.

    Google Scholar 

  35. C. Winter, “Phase-scanning experiments with two reflector antenna systems,” Proc. IEEE, vol. 56, no. 11, pp. 1984–1999, 1968.

    Article  Google Scholar 

  36. R. J. Mailloux and P. Blacksmith, “Array and reflector techniques for precision approach radars,” AGARD Conf. Proc. No. 139 on Antennas for Avionics, NATO 26–30, November 1973.

    Google Scholar 

  37. W. D. Fitzgerald, “Limited electronic scanning with a near-field Cassegrainian system,” Tech. Rep. 484, ESD-TR-71–271, Lincoln Lab, 1971.

    Google Scholar 

  38. Hughes Aircraft Company, Ground Systems Group, “Tradex S-band phased array design study,” Interim Rep. FP71–14–3, Fullerton, California, May 27, 1971.

    Google Scholar 

  39. W. D. Fitzgerald, “Limited electronic scanning with an offset-feed near-field Gregorian system,” Tech. Rep. 486, ESD-TR-272, Lincoln Lab, MIT, 1971.

    Google Scholar 

  40. Lincoln Lab, “A KREMS phased array radar,” report dated April 26, 1971.

    Google Scholar 

  41. C. J. Miller and D. Davis, “LFOV optimization study, final report,” prepared by Westinghouse Defense and Electronics Systems Center, Systems Development Division, for MIT Lincoln Lab, Contract No. F19628–70-C-0230, May 1, 1972.

    Google Scholar 

  42. Hughes Aircraft Company Ground Systems Group, “Study program for reflector surface optimization LFOV system (TRADEXIKREMS),” FP No. 71–14–138, Fullerton, California, August 19, 1971.

    Google Scholar 

  43. C. J. Sletten, “Caustic matching: a new technique for improving limited-scan antennas,” US Air Force Cambridge Research Laboratories, Hanscom Air Force Base, Massachusetts, December 17, 1974.

    Google Scholar 

  44. C. H. Tang and C. F. Winter, final report on Contract No. AF19628–72-C-0213.

    Google Scholar 

  45. M. Born and E. Wolf, Principles of Optics, New York: Pergamon Press, 1959.

    MATH  Google Scholar 

  46. Hughes Aircraft Company Ground Systems Group, “Limited-scan antenna techniques study,” final report on Contract No. F1962B-73-C-0129, Fullerton, California 92634, August 14, 1975.

    Google Scholar 

  47. R. Tang, “Survey of time delay beam steering techniques,” Proc. 1970 Phased Array Antenna Symp, ed. by A. A. Oliner and G. H. Knittel, Dedham: Artech House, pp. 254–260, 1972.

    Google Scholar 

  48. N. S. Wong, R. Tang and E.E.Barber, “A multielement high-power monopulse feed for low side lobes and high aperture efficiency,” IEEE Trans. Antennas Propag, vol. AP-22, pp. 402–407, May 1974.

    Article  Google Scholar 

  49. E. C. DuFort, “Optical technique for broadbanding phased arrays,” IEEE Trans. Antennas Propag, vol. AP-23, pp. 516–523, July 1975.

    Article  Google Scholar 

  50. J. L. McFarland and J. S. Ajioka, “Multiple beam constrained lens design,” NEREM Rec, November 1962.

    Google Scholar 

  51. L. Stark, “High-resolution hemispherical reflector antenna,” US Patent No. 3,852,748, assigned to Hughes Aircraft Company, December 3, 1974.

    Google Scholar 

  52. G. V. Borgiotti, “An antenna for limited scan in one plane: design criteria and numerical simulation,” IEEE Trans. Antennas Propag, vol. AP-25, no. 2, March 1977.

    Google Scholar 

  53. R. J. Giannini, “An electronically scanned cylindrical array based on a switching and phasing technique,” 1969 G-AP Intl. Symp. Program Dig, pp. 199–204, 1969.

    Google Scholar 

  54. A. E. Holley, E. C. DuFort, and R. A. Dell-Imagine, “An electronically scanned beacon antenna,” IEEE Trans. Antennas Propag, vol. AP-22, no. 1, pp. 3–12, January 1974.

    Article  Google Scholar 

  55. J. E. Boyns, C. W. Gorham, A. D. Munger, J. H. Provencher, J. Reindel, and B. I. Small, “Step-scanned circular array antenna,” IEEE Trans. Antennas Propag, vol. AP-18, no. 5, pp. 590–595, September 1970.

    Article  Google Scholar 

  56. P. Sheleg, “A matrix-fed circular array for continuous scanning,” Proc. IEEE, vol. 56, no. 11, November 1968.

    Article  Google Scholar 

  57. “Proposal for air traffic control radar beacon system (ATCRBS) electronic scan antenna,” RFP No. WA5R-1–0059, submitted by Hughes Aircraft Company, Ground Systems Group, Fullerton, California, March 19, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Van Nostrand Reinhold

About this chapter

Cite this chapter

Ajioka, J.S., McFarland, J.L. (1993). Beam-Forming Feeds. In: Lo, Y.T., Lee, S.W. (eds) Antenna Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2638-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2638-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-01594-7

  • Online ISBN: 978-1-4615-2638-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics