Skip to main content

Millimeter-Wave Antennas

  • Chapter
Antenna Handbook

Abstract

The millimeter-wave region of the electromagnetic spectrum is commonly defined as the 30- to 300-GHz frequency band or the 1-cm to 1-mm wavelength range. Utilization of this frequency band for the design of data transmission and sensing systems has a number of advantages:

  1. 1

    The very large bandwidth resolves the spectrum crowding problem and permits communication at very high data rates.

  2. 2

    The short wavelength allows the design of antennas of high directivity but reasonable size, so that high-resolution radar and radiometric systems and very compact guidance systems become feasible.

  3. 3

    Millimeter waves can travel through fog, snow, and dust much more readily than infrared or optical waves.

  4. 4

    Finally, millimeter-wave transmitters and receivers lend themselves to integrated and, eventually, monolithic design approaches, resulting in rf heads which are rugged, compact, and inexpensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. F. Kay, “Millimeter-wave antennas,” Proc. IEEE,vol. 54, pp. 641–647, April 1966.

    Article  Google Scholar 

  2. R. B. Dybdal, “Millimeter-wave antenna development,” Proc. 1982 Antenna Appl. Symp.,University of Illinois, September 22–24, 1982.

    Google Scholar 

  3. E. K. Reedy and G. W. Ewell, “Millimeter-wave radar, in infrared and millimeter waves,” in Infrared and Millimeter Waves, Vol. 4, ed. by K. J. Button and J. C. Wiltse, New York: Academic Press, 1981, pp. 23–24.

    Google Scholar 

  4. R. W. Myhre, “Advanced 30/20-GHz multiple-beam antennas for communications satellites,” Proc. 1982 Antenna Appl. Symp.,University of Illinois, September 22–24, 1982.

    Google Scholar 

  5. J. Smetana, “Application of MMIC modules in future multibeam satellite antenna systems,” Proc. 1982 Antenna Appl. Symp., University of Illinois, September 22–24, 1982.

    Google Scholar 

  6. N. Williams and N. A. Adatia, “Millimeter-wave antennas,” Proc. Mil. Microwave Conf., London, UK, October 22–24, 1980.

    Google Scholar 

  7. R. L. Powers, K. D. Arkind, and D. G. LaRochelle, “Extended design yields compact 18–40 GHz antenna,” Microwave Systems News, pp. 89–96, November 1981.

    Google Scholar 

  8. D. K. Waineo and J. F. Konieczny, “Millimeter-wave monopulse antennas with rapid scan capability,” IEEEIAP-S 1979 Intl. Symp. Dig., pp. 477–480, Seattle, June 18–22, 1979.

    Google Scholar 

  9. O. B. Kessler and J. George, “94-GHz antenna techniques,” Tech. Rep. AFWALTR-80–1222, Texas Instruments, February 1981.

    Google Scholar 

  10. L. M. Schwab, A. R. Dion, and D. L. Washington, “Space-fed, offset, plane-wave Cassegrainian system for ehf applications,” Proc. 1982 Antenna Appl. Symp.,University of Illinois, September 22–24, 1982.

    Google Scholar 

  11. J. Ruze, “Antenna tolerance theory—a review,” Proc. IEEE,vol. 54, pp. 633–640, April 1966.

    Article  Google Scholar 

  12. B. E. Vu The Bao, “Influence of correlation interval and illumination taper in antenna tolerance theory,” Proc. Inst. Electr. Eng. (London), vol. 166, pp. 195–202, 1969.

    Google Scholar 

  13. H. Zucker, “Gain of antennas with random surface deviations,” Bell Syst. Tech. J., vol. 47, pp. 1637–1651, 1968.

    Google Scholar 

  14. P. R. Cowles and E. A. Parker, “Reflector surface error compensation in Cassegrainian antennas,” IEEE Trans. Antennas Propag., vol. AP-23, pp. 323–328, May 1975.

    Article  Google Scholar 

  15. E. N. Davies, “Proposals for electronic compensation of surface profile errors in large reflectors, design and construction of large steerable aerials,” IEE Conf. Pub. 21,pp. 80–83, 1966.

    Google Scholar 

  16. R. A. Semplak and R. H. Turrin, “Pressure formed parabolic reflectors for millimeter wavelengths,” IEEE Trans. Antennas Propag., vol. AP-16, pp. 762–764, November 1968.

    Google Scholar 

  17. A. G. Repjar and D. P. Kremer, “Accurate evaluation of a millimeter-wave compact range using planar near-field scanning,” IEEE Trans. Antennas Propag., vol. AP-30, pp. 419–425, May 1982.

    Article  Google Scholar 

  18. J. R. Cogdell et al., “High-resolution millimeter reflector antennas,” IEEE Trans. Antennas Propag., vol. AP-18, pp. 515–529, July 1970.

    Article  Google Scholar 

  19. J. W. M. Baars, “Design of large millimeter-wave radio telescopes,” Proc. 1980 Intl. URSI Symp., Munich, Germany, pp. 143A/1–4, August 26–29, 1980.

    Google Scholar 

  20. S. V. Hoerner and W.-Y. Wong, “Gravitational deformation and astigmatism of tiltable radio telescopes,” IEEE Trans. Antennas Propag., vol. AP-23, pp. 689–695, September 1975.

    Article  Google Scholar 

  21. W. Rotman, “Ehf dielectric lens antenna for multiple beam MILSATCOM applications,” 1982 Intl. IEEE/AP-S Symp. Dig., Albuquerque, pp. 132–135, June 1982.

    Google Scholar 

  22. J. T. Mayhan and A. J. Simmons, “A low side lobe K a -band antenna-radome study,“ IEEE Trans. Antennas Propag., vol. AP-23, pp. 569–572, July 1975.

    Article  Google Scholar 

  23. G. Bekefi and G. W. Farnell, “A homogeneous dielectric sphere as a microwave lens,” Can. J. Phys., vol. 34, 1956.

    Google Scholar 

  24. G. T. diFrancia, “New stigmatic system of the concentric type,” J. Opt. Soc. Am., vol. 47, p. 566, June 1957.

    Article  Google Scholar 

  25. G. T. diFrancia, “Spherical lenses for infrared and microwaves,” J. Appl. Phys., vol. 32, p. 2051, 1961.

    Article  Google Scholar 

  26. T. C. Cheston and E. J. Luoma, “Constant-K lenses,” APL Tech. Dig.,April 1963.

    Google Scholar 

  27. S. Cornbleet, “A simple spherical lens with external foci,” Microwave J., vol. 8, p. 65, May 1965.

    Google Scholar 

  28. T. L. ApRhys, “The design of radially symmetric lenses,” IEEE Trans. Antennas Propag., vol. AP-18, pp. 497–506, July 1970.

    Article  Google Scholar 

  29. H. Mieras, “Radiation pattern computation of a spherical lens using Mie series,” IEEE Trans. Antennas Propag.,vol. AP-30, pp. 1221–1224, November 1982.

    Article  MathSciNet  Google Scholar 

  30. M. S. Narasimhan and S. Ravishankar, “Radiation from aperture antennas radiating in the presence of a dielectric sphere,” IEEE Trans. Antennas Propag.,vol. AP-30, pp. 1237–1240, November 1982.

    Article  Google Scholar 

  31. Y. W. Chang, J. A. Paul, and Y. C. Ngan, “Millimeter-wave integrated circuit modules for communication interconnect systems,” US Army R&D Tech. Rep. ECOM76–1353–2, November 1977.

    Google Scholar 

  32. J. J. Lee, “Dielectric lens shaping and coma-correction zoning, Part I: Analysis,” IEEE Trans. Antennas Propag., vol. AP-31, pp. 211–216, January 1983.

    Article  Google Scholar 

  33. J. J. Lee and R. L. Carlise, “A coma-corrected multibeam shaped lens antenna, Part II: Experiments,” IEEE Trans. Antennas Propag.,vol. AP-31, pp. 216–220, January 1983.

    Article  Google Scholar 

  34. J. C. Wiltse, “Fresnel zone-plate lenses,” SPIE Proc.,vol. 544, Millimeter-Wave Technology III, July 1985.

    Google Scholar 

  35. H. T. Buscher, “Electrically controllable liquid artificial dielectric media,” IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp. 540–545, May 1979.

    Article  Google Scholar 

  36. R. Blundell and M. C. Carter, “Millimeter-wave aerials for full illumination radars,” Proc. Mil. Microwaves, London, UK, October 22–24, 1980.

    Google Scholar 

  37. R. Baldwin and P. A. McInnes, “A rectangular corrugated feedhorn,” IEEE Trans. Antennas Propag., vol. AP-23, pp. 814–817, November 1975.

    Article  Google Scholar 

  38. H. P. Coleman, R. M. Brown, and B. D. Wright, “Parabolic reflector offset fed with a corrugated conical horn,” IEEE Trans. Antennas Propag., vol. AP-23, pp. 817–819, November 1975.

    Article  Google Scholar 

  39. T.-S. Chu and W. E. Legg, “Gain of corrugated conical horns,” IEEE Trans. Antennas Propag., vol. AP-30, pp. 698–703, July 1982.

    Google Scholar 

  40. B. M. Thomas and K. J. Greene, “A curved aperture corrugated horn having very low cross-polar performance,” IEEE Trans. Antennas Propag.,vol. AP-30, pp. 1068–1072, November 1982.

    Article  Google Scholar 

  41. C. A. Mentzer and L. Peters, “Pattern analysis of corrugated horn antennas,” IEEE Trans. Antennas Propag., vol. AP-24, pp. 304–309, 1976.

    Article  Google Scholar 

  42. M. A. Jansen, S. M. Bednarczyk, S. Gulkis, H. W. Marlin, and G. F. Smoot, “Pattern measurement of a low-sidelobe horn antenna,” IEEE Trans. Antennas Propag., vol. AP-27, pp. 551–555, July 1979.

    Article  Google Scholar 

  43. T. Ohtera and H. Ujiie, “Radiation performance of a modified rhombic dielectric plate antenna,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 660–662, July 1981.

    Article  Google Scholar 

  44. A. Hombach, “Dielectric feeds with low cross polarization,” Proc. 1980 Intl. URSI Symp.,Munich, Germany, August 26–29, 1980.

    Google Scholar 

  45. N. Nakajima and R. Wantanabe, “A quasioptical circuit technology for short millimeter-wavelength multiplexers,” IEEE Trans. Microwave Theory Tech.,vol. MTT-29, pp. 897–905, September 1981.

    Article  Google Scholar 

  46. R. J. Eckstein et al., “35-GHz active aperture,” Tech. Rep. AFWAL-TR-81–1079,Motorola, June 1981.

    Google Scholar 

  47. M. F. Durkin, R. J. Eckstein, M. D. Mills, M. S. Stringfellow, and R. A. Neidhard, “35-GHz active aperture,” 1981 IEEE MTT-S Intl. Microwave Symp. Dig., Los Angeles, June 1981.

    Google Scholar 

  48. M. A. Weiss, “Microstrip antennas for millimeter waves,” R&D Tech. Rep. ECOM-76–0110-F, October 1977.

    Google Scholar 

  49. M. A. Weiss and R. B. Cassell, “Microstrip millimeter-wave antenna study,” R&D Tech. Rep. CORADCOM-77–0158-F, April 1979.

    Google Scholar 

  50. M. A. Weiss, “Microstrip antennas for millimeter waves,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 171–174, January 1981.

    Article  Google Scholar 

  51. T. Metzler, “Microstrip series arrays,” Proc. Workshop on Printed-Circuit Antenna Technology, New Mexico State University, Las Cruces, NM, pp. 21–1–16, October 17–19, 1979.

    Google Scholar 

  52. K. R. Carver and J. W. Mink, “Microstrip antenna technology,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 2–24, January 1981.

    Article  Google Scholar 

  53. R. J. Mailloux, J. F. Mcllvenna, and N. P. Kernweis, “Microstrip array technology,” IEEE Trans. Antennas Propag.,vol. AP-29, pp. 25–37, January 1981.

    Article  Google Scholar 

  54. J. R. James, P. S. Hall, C. Wood, and A. Henderson, “Some recent developments in microstrip antenna design,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 124–128, January 1981.

    Article  Google Scholar 

  55. J. R. James, P. S. Hall, C. Wood, and A. Henderson, “Microstrip antenna research at the Royal Military College of Sciences,” Proc. Workshop on Printed Circuit Antenna Technology, New Mexico State University, Las Cruces, pp. 1–1–10, October 17–19, 1979.

    Google Scholar 

  56. J. C. Williams, “A 36-GHz printed planar array,” Electron. Lett., vol. 14, pp. 136–137, March 1978.

    Article  Google Scholar 

  57. I. E. Rana and N. G. Alexopoulos, “Current distribution and input impedance of printed dipoles,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 99–105, January 1981.

    Article  Google Scholar 

  58. N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, “Substrate optimization for integrated-circuit antennas,” IEEE Trans. Microwave Theory and Tech.,vol. MTT-31, pp. 550–557, July 1983.

    Article  Google Scholar 

  59. P. B. Katehi and N. G. Alexopoulos, “On the effect of substrate thickness and permittivity on printed-circuit dipole properties,” IEEE Trans. Antennas Propag.,vol. AP-31, pp. 34–39, January 1983.

    Article  Google Scholar 

  60. W.-C. Chew and J.-A. Kong, “Analysis of circular microstrip disk antenna with a thick dielectric substrate,” IEEE Trans. Antennas Propag.,vol. AP-29, pp. 68–76, January 1981.

    Article  Google Scholar 

  61. F. Lalezari, “Dual-polarized high-efficiency microstrip antenna,” U.S. patent no. 322930, November 1981.

    Google Scholar 

  62. J. R. James and C. M. Hall, “Investigation of new concepts for designing millimeter-wave antennas,” final technical report on Contract DAJA37–80-C-0183, US Army European Research Office, September 1983.

    Google Scholar 

  63. F. Lalezari and T. Pett, “Millimeter microstrip antennas for use in mil-spec environment,” final report to Battelle Columbus Labs/US Army CECOM, November 21, 1983.

    Google Scholar 

  64. M. Campi, “Design of microstrip linear array antennas by computer,” 1982 Army Science Conference, West Point, New York, June 1982.

    Google Scholar 

  65. B. B. Jones, F. Y. M. Chow, and A. W. Seeto, “The synthesis of shaped patterns with series-fed microstrip patch arrays,” IEEE Trans. Antennas Propag., vol. AP-30, pp. 1206–1212, November 1982.

    Article  Google Scholar 

  66. F. Lalezari, private communication.

    Google Scholar 

  67. A. Henderson, A. E. England, and J. R. James, “New low-loss millimeter-wave hybrid microstrip antenna array,” Eleventh European Microwave Conference, Amsterdam, The Netherlands, September 1981.

    Google Scholar 

  68. J. R. James and A. Henderson, “A critical review of millimeter planar arrays for military applications,” Military Microwave Conference, London, England, October 20–22, 1982.

    Google Scholar 

  69. R. M. Knox, “Dielectric waveguide microwave integrated circuits—an overview,” IEEE Trans. Microwave Theory Tech.,vol. MTT-24, pp. 806–814, November 1976.

    Article  Google Scholar 

  70. M. T. Birand and R. V. Gelsthorpe, “Experimental millimetric array using dielectric radiators fed by means of dielectric waveguide,” Electron. Lett., vol. 17, no. 18, pp. 633–635, September 1981.

    Article  Google Scholar 

  71. N. G. Alexopoulos and D. R. Jackson, “Fundamental superstrate effects (cover) on printed-circuit antennas,” Integrated Electromagnetics Lab Rep.,No. 10, UCLA Rep. no. ENG-83–50, October 14, 1983.

    Google Scholar 

  72. D. R. Jackson and N. G. Alexopoulos, “Superstrate (cover) effects on printed-circuit antennas,” Dig. 1984 Intl. IEEE-APS/URSI Symp., pp. 563–565, Boston, June 1984.

    Google Scholar 

  73. B. R. Rao, “94-gigahertz slotted waveguide array fabricated by photolithographic techniques,” Dig. 1983 Intl. IEEE-APSIURSI Meeting, pp. 688–689, Houston, May 23–26, 1983.

    Google Scholar 

  74. F. G. Farrar, “Millimeter-wave W-band slotted waveguide antennas,” 1981 IEEE/ AP-S Intl. Symp. Dig., Los Angeles, pp. 436–439, June 16–19, 1981.

    Google Scholar 

  75. M. C. Carter and E. R. Cashen, “Linear arrays for centimetric and millimetric wavelengths,” Proc. Mil. Microwave Conf. London, UK, October 22–24, 1980.

    Google Scholar 

  76. C. A. Strider, “Millimeter-wave planar arrays,” 1974 Millimeter-Wave Techniques Conf., NELC, San Diego, pp. B6/1–11, March 26–28, 1974.

    Google Scholar 

  77. C. A. Boyd, Jr., “Practical millimeter-wave ferrite phase shifters,” Microwave J., vol. 25, pp. 105–108, December 1982.

    Google Scholar 

  78. J. L. Hilburn and F. H. Prestwood, “K-band frequency scanned waveguide array,” IEEE Trans. Antennas Propag., vol. AP-22, pp. 340–342, March 1974.

    Article  Google Scholar 

  79. R. C. Honey, “Line source and linear arrays for millimeter wavelengths,” Proc. Symp. Millimeter Waves,Polytechnic Institute of Brooklyn, NY, March 31–April 2, 1959.

    Google Scholar 

  80. S. Silver, ed., Microwave Antenna Theory and Design, New York: McGraw-Hill Book Co., 1949.

    Google Scholar 

  81. E. M. Systems, Inc., “Millimeter-wave spiral antenna,” Microwave J., vol. 18, p. 28, December 1975.

    Google Scholar 

  82. K. S. Kelleher, “High-gain reflector-type antennas,” chapter 12 in Antenna Engineering Handbook, ed. by H. J. Jasik, New York: McGraw-Hill Book Co., 1961.

    Google Scholar 

  83. C. C. Chen, “High-efficiency V-band fan beam antenna,” 1981 Intl. Symp. Dig., Los Angeles: IEEE Antennas and Propagation Society, pp. 124–126, June 16–19, 1981.

    Google Scholar 

  84. K. S. Kelleher, “Scanning antennas,” chapter 15 in Antenna Engineering Handbook, ed. by H. J. Jasik, New York: McGraw-Hill Book Co., 1961.

    Google Scholar 

  85. E. C. Dufort and H. Uyeda, “A wide-angle scanning optical antenna,” IEEE Trans. Antennas Propag., vol. AP-31, pp. 60–67, January 1983.

    Article  Google Scholar 

  86. F. E. Ore, “The modified biconical horn millimeter-wave antenna,” Tech. Rep. AFAL-TR-65–156, Univ. of Illinois, Urbana, July 1965.

    Google Scholar 

  87. A. D. Munger and J. H. Greg, “Design and development of biconical horn antennas for 18–100 GHz,” NOSC Tech. Note 580,San Diego, December 1978.

    Google Scholar 

  88. F. C. Jain, R. Bansal, and C. V. Valerio, Jr., “Semiconductor antenna: a new device in millimeter-and submillimeter-wave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. MIT-32, pp. 204–207, February 1984.

    Article  Google Scholar 

  89. “Final technical report for 54.5-GHz omni radio system,” Rep. No. 1301 R 0001, US Army CORADCOM Contract No. DAAK80–79-C-0765, Norden Systems, October 1980.

    Google Scholar 

  90. M. J. Ehrlich, “Slot antenna arrays,” chapter 9 in Antenna Engineering Handbook, ed. by H. J. Jasik, New York: McGraw-Hill Book Co., 1961.

    Google Scholar 

  91. S. A. Long, M. V. McAllister, and L. C. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag.,vol. AP-31, pp. 406–412, May 1983.

    Article  Google Scholar 

  92. T. E. Nowicki, “Microwave substrates, present and future,” Proc. Workshop on Printed Circuit Antenna Technology, New Mexico State University, Los Cruces, NM, October 17–19, 1979.

    Google Scholar 

  93. H. Howe, Jr., “Dielectric material development,” Microwave J., vol. 21, pp. 39–40, November 1978.

    Google Scholar 

  94. P. F. Goldsmith, “Quasi-optical techniques,” Chapter 5 in Infrared and Millimeter Waves, Vol. 6, ed. by K. J. Button, p. 335, New York: Academic Press, 1982.

    Google Scholar 

  95. G. E. Mueller and W. A. Tyrell, “Polyrod antennas,” Bell Syst. Tech. J., vol. 26, pp. 837–851, October 1947.

    Google Scholar 

  96. P. Mallach, “Notes from unpublished German documents,” Central Radio Bureau Library, London.

    Google Scholar 

  97. D. G. Kiely, Dielectric Aerials, London: Methuen & Co., 1952.

    Google Scholar 

  98. F. J. Zucker, “Surface-and leaky-wave antennas,” chapter 16 in Antenna Engineering Handbook, ed. by H. J. Jasik, New York: McGraw-Hill Book Co., 1961.

    Google Scholar 

  99. D. B. Rutledge et al., “Antennas and waveguides for far-infrared integrated circuits,” IEEE J. Quantum Electron., vol. QE-16, pp. 508–516, May 1980.

    Article  Google Scholar 

  100. S. E. Schwarz and D. B. Rutledge, “Moving toward near mm-wave integrated circuits,” Microwave J.,vol. 23, pp. 47–67, June 1980.

    Google Scholar 

  101. J. A. G. Malherbe, T. N. Trinh, and R. Mittra, “Transition from metal to dielectric waveguide,” Microwave J., vol. 23, pp. 71–74, November 1980.

    Google Scholar 

  102. B. J. Levine and J. E. Kietzer, “Hybrid millimeter-wave integrated circuits,” US Army R&D Tech. Rep. ECOM-74–0577-F, October 1975.

    Google Scholar 

  103. H. S. Jones, Jr., “Conformal and small antenna designs,” Tech. Rep. HDL-TR-1952, US Army ERADCOM, Adelphi, Maryland, April 1981.

    Google Scholar 

  104. D. C. Chang and R. Mittra, “Workshop report on modern millimeter-wave systems,” Scientific Rep. 63, University of Colorado, Boulder, May 1981.

    Google Scholar 

  105. Y. Shiau, “Dielectric-rod antennas for millimeter-wave integrated circuits,” IEEE Trans. Microwave Theory Tech.,vol. MTT-24, pp. 869–872, November 1976.

    Article  Google Scholar 

  106. S. Kobayashi, R. Mittra, and R. Lampe, “Dielectric tapered-rod antennas for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. AP-30, pp. 54–58, January 1982.

    Article  Google Scholar 

  107. S. P. Schlesinger and A. Vigants, “HE11 excited dielectric surface-wave radiators,” Tech. Rep. AFCRC-TN-59–573, Columbia University, June 1959.

    Google Scholar 

  108. C. M. Angulo and W. S. C. Chang, “A variational expression for the terminal admittance of a semi-infinite dielectric rod,” IEEE Trans. Antennas Propag.,vol. AP-7, p. 207, July 1959.

    Google Scholar 

  109. F. J. Zucker, “Electromagnetic boundary waves,” Tech. Rep. AFCRL-63–165, AF Cambridge Research Laboratories, June 1963.

    Google Scholar 

  110. J. R. James, “Theoretical investigation of cylindrical dielectric-rod antennas,” Proc. IEE (London), vol. 114, pp. 309–319, March 1967.

    Google Scholar 

  111. A. D. Yaghjian and E. D. Kornhauser, “A modal analysis of dielectric-rod antennas excited in the HE11 mode,” IEEE Trans. Antennas Propag., vol. AP-20, pp. 122–128, January 1972.

    Article  Google Scholar 

  112. J. R. Blakey, “A scattering theory approach to the prediction of dielectric-rod antenna radiation patterns: the TMo1 mode,” IEEE Trans. Antennas Propag., vol. AP-23, pp. 577–579, July 1975.

    Article  Google Scholar 

  113. F. J. Zucker, “Surface-wave antennas,” chapter 21 in Antenna Theory, Part II, ed. by R. E. Collin and F. J. Zucker, New York: McGraw-Hill Book Co., 1969.

    Google Scholar 

  114. L. B. Felsen, “Radiation from a tapered surface-wave antenna,” IRE Trans. Antennas Propag., vol. AP-8, pp. 577–586, November 1960.

    Article  Google Scholar 

  115. P. Balling, “Radiation from the dielectric wedge,” Lic. Tech. Dissertation, Technical University of Denmark, December 1971.

    Google Scholar 

  116. P. Balling, “Surface fields on the source-excited dielectric wedge,” IEEE Trans. Antennas Propag., vol. AP-21, pp. 113–115, January 1973.

    Article  Google Scholar 

  117. P. Balling, “On the role of lateral waves in the radiation from the dielectric wedge,” IEEE Trans. Antennas Propag., vol. AP-21, pp. 247–248, March 1973.

    Article  Google Scholar 

  118. S. T. Peng and F. Schwering, “Effect of taper profile on performance of dielectric taper antennas,” Dig. 1979 Natl. Radio Sci. Mtg. and Intl. IEEE-APS Symp., p. 96, Seattle, June 18–22, 1979.

    Google Scholar 

  119. S. T. Peng and F. Schwering, “Omni-directional dielectric antennas,” 9th DARPA/ Tri-Service Millimeter-Wave Conference, Huntsville, Alabama, October 20–22, 1981.

    Google Scholar 

  120. T. Itoh, “Dielectric waveguide type millimeter-wave integrated circuits,” in Infrared and Millimeter Waves, Vol. 4, ed. by K. J. Button, pp. 199–273, New York: Academic Press, 1981.

    Google Scholar 

  121. N. Williams, A. W. Rudge, and S. E. Gibbs, Proc. IEEE MTT-S Intl. Microwave Symp., pp. 542–544, San Diego, 1977.

    Google Scholar 

  122. K. L. Klohn, R. E. Horn, H. Jacobs, and E. Freibergs, “Silicon waveguide frequency scanning linear array antenna,” IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 764–773, October 1978.

    Article  Google Scholar 

  123. R. E. Horn, H. Jacobs, E. Freibergs, and K. L. Klohn, “Electronic modulated beam-steering silicon waveguide array antenna,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 647–653, June 1980.

    Article  Google Scholar 

  124. R. E. Horn, H. Jacobs, K. L. Klohn, and E. Freibergs, “Single-frequency electronic-modulated analog line scanning using a dielectric antenna,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp. 816–820, May 1982.

    Article  Google Scholar 

  125. S. T. Peng and F. Schwering, “Dielectric grating antennas,” R&D technical report, CORADCOM-78–3, Fort Monmouth, July 1978.

    Google Scholar 

  126. F. Schwering and S. T. Peng, “Design of periodically corrugated dielectric antennas for millimeter-wave applications,” Proc. 1982 Antenna Appl. Symp., Univ. of Illinois, Urbana, September 22–24, 1982.

    Google Scholar 

  127. F. Schwering and S. T. Peng, “Design of dielectric grating antennas for millimeter-wave applications,” IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 199–209, February 1983.

    Article  Google Scholar 

  128. J. Borowick, W. Bayha, R. A. Stern, and R. W. Babbitt, “Dielectric waveguide antennas,” 1982 Army Science Conference, West Point, New York, June 1982.

    Google Scholar 

  129. S. Kobayashi, R. Lampe, R. Mittra, and S. Ray, “Dielectric-rod leaky-wave antennas for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 822–824, September 1981.

    Article  Google Scholar 

  130. T. N. Trinh, R. Mittra, and R. J. Paleta, “Horn image-guide leaky-wave antenna,” 1981 IEEE-MTT-S Intl. Microwave Symp. Dig., Los Angeles, June 1981.

    Google Scholar 

  131. T. N. Trinh, R. Mittra, and R. J. Paleta, “Horn image-guide leaky-wave antenna,” IEEE Trans. Microwave Theory Tech.,vol. MTT-29, pp. 1310–1314, December 1981.

    Article  Google Scholar 

  132. T. Itoh, “Application of gratings in dielectric waveguides for leaky-wave antennas and band-reject filters,” IEEE Trans. Microwave Theory Tech.,vol. MTT-25, pp. 1134–1138, December 1977.

    Article  Google Scholar 

  133. T. Itoh and B. Adelseck, “Trapped image guide for millimeter-wave circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 1433–1436, December 1980.

    Article  Google Scholar 

  134. T. Itoh and B. Adelseck, “Trapped image-guide leaky-wave antennas for millimeter-wave applications,” IEEE Trans. Antennas Propag.,vol. AP-30, pp. 505–509, May 1982.

    Article  Google Scholar 

  135. K. Solbach, “E-band leaky-wave antenna using dielectric image line with etched radiating elements,” 1979 MTT-S Intl. Microwave Symp. Dig., pp. 214–216, April 1979.

    Google Scholar 

  136. K. Solbach, “Slots in dielectric image line as mode launchers and circuit elements,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 10–16, January 1981.

    Article  Google Scholar 

  137. W. V. McLevige, T. Itoh, and R. Mittra, “New waveguide structures for millimeter-wave and optical integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp. 788–794, October 1975.

    Article  Google Scholar 

  138. S. T. Peng and T. Tamir, “Effects of groove profile on the performance of dielectric grating couplers,” Proc. Symp. Opt. Acoust. Micro-Electron.,Polytechnic Press, Brooklyn, 1974.

    Google Scholar 

  139. D. Marcuse, “Exact theory of TE-wave scattering from blazed dielectric gratings,” Bell Syst. Tech. J., vol. 55, pp. 1295–1317, 1976.

    Google Scholar 

  140. K. C. Chang and T. Tamir, “Simplified approach to surface-wave scattering by blazed dielectric gratings,” Appl. Opt.,vol. 19, pp. 282–288, 1980.

    Article  Google Scholar 

  141. A. Gruss, K. T. Tam, and T. Tamir, “Blazed dielectric gratings with high beam-coupling efficiencies,” Appl. Phys. Lett., vol. 36, pp. 523–526, 1980.

    Article  Google Scholar 

  142. T. Hori and T. Itanami, “Circularly polarized linear array antenna using a dielectric image guide,” IEEE Trans. Microwave Theory Tech., vol. MIT-29, pp. 967–970, September 1981.

    Article  Google Scholar 

  143. S. T. Peng, “Oblique guidance of surface waves on corrugated dielectric layers,” Proc. URSI Symp. Electromag. Waves, Paper No. 341B, Munich, Germany, August 1980.

    Google Scholar 

  144. S. T. Peng, A. A. Oliner, and F. Schwering, “Theory of dielectric grating antennas of finite width,” IEEE AP-S Intl. Symp. Dig., pp. 529–532, Los Angeles, June 1981.

    Google Scholar 

  145. M. J. Shiau, S. T. Peng, and A. A. Oliner, “Simple and accurate perturbation procedure for millimeter-wave dielectric grating antennas of finite width,” 1982 IEEE/AP-S Symp. Dig., pp. 648–651, Albuquerque, May 24–28, 1982.

    Google Scholar 

  146. S. T. Peng, M. J. Shiau, A. A. Oliner, J. Borowick, W. Bayha, and F. Schwering, “A simple analysis procedure for dielectric grating antennas of finite width,” 1984 IEEE-AP-S Symposium, Boston, June 25–28, 1984.

    Google Scholar 

  147. T. Tamir, Integrated Optics, New York: Springer-Verlag, 1975.

    Google Scholar 

  148. S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, p. 123, 1975.

    Article  Google Scholar 

  149. M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide systems,” Opt. Commun.,vol. 8, pp. 113–117, 1973.

    Article  Google Scholar 

  150. K. Honda, S. T. Peng, and T. Tamir, “Improved perturbation analysis of dielectric gratings,” Appl. Phys.,vol. 5, p. 325, 1975.

    Article  Google Scholar 

  151. S. T. Peng and T. Tamir, “TM mode perturbation analysis of dielectric gratings,” Appl. Phys., vol. 7, p. 35, 1975.

    Article  Google Scholar 

  152. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., vol. 14, pp. 235–254, 1977.

    Article  Google Scholar 

  153. R. Mittra and R. Kastner, “A spectral domain approach for computing the radiation characteristics of a leaky-wave antenna for millimeter waves,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 654–656, July 1981.

    Google Scholar 

  154. R. M. Knox and P. P. Toulios, “Integrated circuits for the millimeter through optical frequency range,” Proc. Symp. Millimeter Waves, Polytechnic Institute of Brooklyn, March 31-April 2, 1970.

    Google Scholar 

  155. J. R. James and P. S. Hall, “Microstrip antennas and arrays, part 2: new array-design technique,” IEE J. Microwaves, Optics and Antennas, no. 1, pp. 175–181, 1977.

    Article  Google Scholar 

  156. K. Solbach and B. Adelseck, “Dielectric image line leaky-wave antennas for broadside radiation,” Electron. Lett., vol. 19, pp. 640–644, August 1983.

    Article  Google Scholar 

  157. I. J. Bahl and P. Bhartia, “Leaky-wave antennas using artificial dielectrics at millimeter-wave frequencies,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 1205–1212, November 1980.

    Google Scholar 

  158. F. R. Ore, “A millimeter-wave receiving antenna with an omnidirectional or directional scannable azimuthal pattern and a directional vertical pattern,” Tech. Rep. AFAL-TR-72–282, Univ. of Illinois, September 1971.

    Google Scholar 

  159. F. R. Ore, “A millimeter-wave receiving antenna with an omnidirectional or directional scannable azimuthal pattern and a directional vertical pattern,” IEEE Trans. Antennas Propag., vol. AP-20, pp. 481–482, July 1972.

    Article  Google Scholar 

  160. G. E. Mueller, “A broadside dielectric antenna,” Proc. IRE,vol. 40, pp. 71–75, July 1952.

    Article  Google Scholar 

  161. S. T. Peng, “Omnidirectional dielectric antennas,” CECOM R&D report in preparation.

    Google Scholar 

  162. S. T. Peng and A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides, part I: mathematical formulations,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 843–855, September 1981.

    Article  MathSciNet  Google Scholar 

  163. A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides, part II: new physical effects,” IEEE Trans. Microwave Theory Tech., vol. MIT-29, pp. 855–869, September 1981.

    Article  Google Scholar 

  164. Polytechnic Institute of Brooklyn, Microwave Research Institute, Monthly Performance Summary, Rep. PIBMRI-875, pp. 17–61, 1961.

    Google Scholar 

  165. T. Nakahara and N. Kurauchi, “Transmission modes in the grooved guide,” J. Inst. Electron. Commun. Eng. Japan, vol. 47, no. 7, pp. 43–51, July 1964. Also in Sumitomo Electra Tech. Rev., no. 5, pp. 65–71, January 1965.

    Google Scholar 

  166. D. J. Harris and K. W. Lee, “Groove guide as a low-loss transmission system for short millimetric waves,” Electron. Lett., vol. 13, no. 25, pp. 775–776, December 8, 1977. Professor Harris and his colleagues have published many papers on this topic, of which this is one of the first.

    Article  Google Scholar 

  167. D. J. Harris and S. Mak, “Groove-guide microwave detector for 100-GHz operation,” Electron. Lett., vol. 17, no. 15, pp. 516–517, July 23, 1981.

    Article  Google Scholar 

  168. A. A. Oliner and P. Lampariello, “Novel leaky-wave antenna for millimeter waves based on groove guide,” Electron. Lett., vol. 18, pp. 1105–1106, December 1982.

    Article  Google Scholar 

  169. P. Lampariello and A. A. Oliner, “Theory and design considerations for a new millimeter-wave leaky groove-guide antenna,” Electron. Lett., vol. 19, pp. 18–20, January 1983.

    Article  Google Scholar 

  170. P. Lampariello and A. A. Oliner, “A new leaky wave antenna for millimeter waves using an asymmetric strip in groove guide, part I: theory,” IEEE Trans. Antennas Propag., vol. AP-33, pp. 1285–1294, December 1985.

    Article  Google Scholar 

  171. P. Lampariello and A. A. Oliner, “A new leaky wave antenna for millimeter waves using an asymmetric strip in groove guide, part II: design considerations,” IEEE Trans. Antennas Propag., vol. AP-33, pp. 1295–1303, December 1985.

    Article  Google Scholar 

  172. P. Lampariello and A. A. Oliner, “Bound and leaky modes in symmetrical open groove guide,” Alta Frequenza, vol. LII, no. 3, pp. 164–166, 1983.

    Google Scholar 

  173. P. Lampariello and A. A. Oliner, “Leaky modes of symmetrical groove guide,” Dig. IEEE/MTT-S Intl. Microwave Symp., pp. 390–392, Boston, May 30-June 3, 1983.

    Google Scholar 

  174. A. A. Oliner and P. Lampariello, “A new simple leaky wave antenna for millimeter waves,” Dig. 1985 North American Radio Sci. Meeting, p. 57, Vancouver, Canada, June 17–21, 1985.

    Google Scholar 

  175. A. A. Oliner and P. Lampariello, “A simple leaky wave antenna that permits flexibility in beam width,” Dig. Natl. Radio Sci. Meeting, p. 26, Philadelphia, June 9–13, 1986.

    Google Scholar 

  176. T. Yoneyama and S. Nishida, “Nonradiative dielectric waveguide for millimeter-wave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, no. 11, pp. 1188–1192, November 1981.

    Article  Google Scholar 

  177. T. Yoneyama and S. Nishida, “Nonradiative dielectric waveguide circuit components,” International Conference on Infrared and Millimeter Waves, Miami, December 1981.

    Google Scholar 

  178. A. Sanchez and A. A. Oliner, “Accurate theory for a new leaky-wave antenna for millimeter waves using nonradiative dielectric waveguide,” Radio Sci., vol. 19, no. 5, pp. 1225–1228, September-October 1984.

    Article  Google Scholar 

  179. A. Sanchez and A. A. Oliner, “Microwave network analysis of a leaky-wave structure in nonradiative dielectric waveguide,” Dig. IEEE MTT-S Intl. Microwave Symp., pp. 118–120, San Francisco, May 30-June 1, 1984.

    Google Scholar 

  180. A. A. Oliner, S. T. Peng, and K. M. Sheng, “Leakage from a gap in NRD guide,” Dig. 1985 IEEE Intl. Microwave Symp.,pp. 619–622, St. Louis, June 3–7, 1985.

    Google Scholar 

  181. H. Shigesawa, M. Tsuji, and A. A. Oliner, “Coupling effects in an NRD guide leaky wave antenna,” Dig. Natl. Radio Sci. Meeting, p. 27, Philadelphia, June 9–13, 1986.

    Google Scholar 

  182. H. Shigesawa and K. Takiyama, “Study of leaky H-guide,” Paper No. M1–7,International Conference on Microwaves, Circuit Theory and Information, Tokyo, 1964. More complete version in K. Takiyama and H. Shigesawa, “On the study of a leaky H-guide,” Sci. Eng. Rev. Doshisha University, vol. 7, no. 4, pp. 203–225, March 1967 (in English).

    Google Scholar 

  183. K. Takiyama and H. Shigesawa, “The radiation characteristics of a leaky H-guide,” J. Inst. Electr. Commun. Eng. Japan (J.I.E.C.E.), vol. 50, no. 2, pp. 181–188, February 1967 (in Japanese).

    Google Scholar 

  184. A. Sanchez and A. A. Oliner, “A new leaky waveguide for millimeter waves using nonradioactive dielectric (NRD) waveguide, part I: accurate theory,” IEEE Trans. Microwave Theory Tech, vol. MTT-35, pp. 737–747, August 1987.

    Article  Google Scholar 

  185. Y. Yoneyama, letter to A. A. Oliner, July 4, 1983.

    Google Scholar 

  186. Q. Han, A. A. Oliner, and A. Sanchez, “A new leaky waveguide for millimeter waves using nonradioactive dielectric (NRD) waveguide, part II: comparison with experiments,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 748–752, August 1987.

    Google Scholar 

  187. T. Yoneyama, T. Kuwahara, and S. Nishida, “Experimental study of nonradiative dielectric waveguide leaky wave antenna,” Proc. 1985 Intl. Symp. Antennas Propag. (ISAP), Kyoto, August 1985.

    Google Scholar 

  188. H. Ermert, “Guided modes and radiation characteristics of covered microstrip lines,” Archiv für Electronik and Ubertragungstechnik, vol. 30, pp. 65–70, February 1976.

    Google Scholar 

  189. H. Ermert, “Guiding and radiation characteristics of planar waveguides,” Microwaves, Optics and Acoustics, vol. 3, pp. 59–62, March 1979.

    Article  Google Scholar 

  190. A. A. Oliner and K. S. Lee, “The nature of the leakage from higher modes on microstrip line,” Dig. 1986 IEEE Intl. Microwave Symp., pp. 57–60, Baltimore, June 2–4, 1986.

    Google Scholar 

  191. A. A. Oliner and K. S. Lee, “Microstrip leaky wave strip antennas,” Dig. 1986 IEEE Intl. Antennas Propag. Symp., pp. 443–446, Philadelphia, June 8–13, 1986.

    Google Scholar 

  192. W. Menzel, “A new traveling-wave antenna in microstrip,” Archiv für Electronik and Übertragungstechnik, vol. 33, pp. 137–140, April 1979.

    Google Scholar 

  193. D. C. Chang and E. F. Kuester, “Total and partial reflection from the end of a parallel-plate waveguide with an extended dielectric loading,” Radio Sci.,vol. 16, pp. 1–13, January-February 1981.

    Article  Google Scholar 

  194. D. M. Pozar, “Considerations for millimeter-wave printed antennas,” IEEE Trans. Antennas Propag., vol. AP-31, pp. 740–747, September 1983.

    Article  Google Scholar 

  195. K. Iizuka, M. Mizusawa, S. Urasaki, and H. Ushigome, “Volume-type holographic antenna,” IEEE Trans. Antennas Propag., vol. AP-23, pp. 807–810, November 1975.

    Article  Google Scholar 

  196. D. F. Sedivec and B. H. Rubin, “A wideband 44-GHz printed-circuit array antenna,” Tech. Rep. RADC-TR-83–198, Rome Air Development Center, Rome, N.Y., October 1983.

    Google Scholar 

  197. K. C. Gupta, R. Garg, and R. Chadha, Computer-Aided Design of Microwave Circuits, Dedham: Artech House, 1981.

    Google Scholar 

  198. T. Itoh and J. Rivera, “A comparative study of millimeter-wave transmission lines,” chapter 2, vol. 9, of Infrared and Millimeter Waves, ed. by K. J. Button, New York: Academic Press, 1983.

    Google Scholar 

  199. J.-F. Miao and T. Itoh, “Coupling between microstrip line and image guide through small apertures in the common ground plane,” IEEE Trans. Microwave Theory Tech.,vol. MTT-31, pp. 361–363, April 1983.

    Article  Google Scholar 

  200. R. E. Neidert, “Waveguide-to-coax-to-microstrip transitions for millimeter-wave monolithic circuits,” Microwave J., vol. 27, pp. 93–101, June 1983.

    Google Scholar 

  201. N. G. Alexopoulos and I. E. Rana, “Mutual impedance computation between printed dipoles,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 106–111, January 1981.

    Article  Google Scholar 

  202. H. G. Oltman and D. A. Huebner, “Electromagnetically coupled microstrip dipole arrays,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 151–157, January 1981.

    Article  Google Scholar 

  203. R. S. Elliott and G. J. Stern, “The design of microstrip dipole arrays including mutual coupling,” part I: theory; part II: experiments,“ IEEE Trans. Antennas Propag.,vol. AP-29, pp. 757–765, September 1981.

    Article  Google Scholar 

  204. A. Sabban, “A new broadband stacked two-layer microstrip antenna,” Dig. 1983 Intl. IEEE Symp. Antennas Propag., pp. 63–66 University of Houston, May 1983.

    Google Scholar 

  205. P. B. Katehi and N. G. Alexopoulos, “A generalized solution to a class of printed-circuit antennas,” Dig. 1984 Intl. IEEE-APSIURSI Symp.,pp. 566–568, Boston, June 1984.

    Google Scholar 

  206. K. Mizuno, Y. Daiku, and S. Ono, “Design of printed resonant antennas for monolithic diode detectors,” IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp. 470–472, June 1977.

    Article  Google Scholar 

  207. D. B. Rutledge and S. E. Schwarz, “Planar multimode detector arrays for infrared and millimeter-wave applications,” IEEE J. Quantum Electron., vol. QE-17, pp. 407–414, March 1981.

    Article  Google Scholar 

  208. D. B. Rutledge and M. S. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag., vol. AP-30, pp. 535–540, July 1982.

    Article  Google Scholar 

  209. C. Yao, S. E. Schwarz, and B. J. Blumenstock, “Monolithic integration of a dielectric millimeter-wave antenna and a mixer diode: an embryonic millimeter-wave IC,” IEEE Trans. Microwave Theory Tech.,vol. MTT-30, pp. 1241–1247, August 1982.

    Google Scholar 

  210. R. J. Stockton, “A monolithic phased array at K-band,” EHF SATCOM Technology Workshop, San Diego, August 1981.

    Google Scholar 

  211. R. J. Stockton, “Monolithic integrated antenna system—a new trend,” Microwave and Millimeter-Wave Monolithic Circuit Symposium, Dallas, June 1982.

    Google Scholar 

  212. D. P. Neikirk, D. B. Rutledge, M. S. Muha, H. Park, and C.-X. Yu, “Far-infrared imaging antenna arrays,” Appl. Phys. Lett., vol. 40, pp. 203–205, 1982.

    Article  Google Scholar 

  213. Z. Rav-Noy, C. Zah, U. Schreter, D. B. Rutledge, T. C. Wand, S. E. Schwarz, and T. F. Kuech, “Monolithic Schottky diode imaging arrays at 94 GHz,” Dig. Infrared and Millimeter-Wave Conf., Miami Beach, December 1983.

    Google Scholar 

  214. T. A. Midford, M. Feng, R. Hackett, J. M. Schellenberg, E. Watkins, and H. Yamasaki, “Advanced GaAs FET technology for ehf monolithic arrays,” NOSC Contractor Rep. 225, February 1984.

    Google Scholar 

  215. C. R. Seashore and D. R. Singh, “Millimeter-wave ICs for precision guided weapons,” Microwave J.,vol. 26, pp. 51–65, June 1983.

    Google Scholar 

  216. C. Zah, R. C. Compton, and D. B. Rutledge, “Efficiencies of elementary integrated-circuit feed antennas,” Electromagnetics, special issue on printed-circuit antennas and devices, pp. 239–254, March 1983.

    Google Scholar 

  217. D. B. Rutledge, private communication.

    Google Scholar 

  218. C. Zah, W. Lam, J. S. Smith, Z. Rav-Noy, and D. B. Rutledge, “Progress in monolithic Schottky-diode imaging arrays,” Ninth International. Conference on Infrared and Millimeter Waves, Osaka, November 1984.

    Google Scholar 

  219. M. Guglielmi and A. A. Oliner, “A practical theory for image guide leaky-wave antennas loaded by periodic metal strips,” Proc. 17th European Microwave Conference,pp. 549–554, Rome, Italy, September 7–11, 1987.

    Google Scholar 

  220. N. Marcuvitz, Waveguide Handbook, Vol. 10, MIT Radiation Laboratory Series, Sec. 6.1, McGraw-Hill Book Co., New York, 1951.

    Google Scholar 

  221. A. A. Oliner, “Scannable Millimeter Wave Arrays,” Final Report on Contract No. F19628–84-K-0025, Rome Air Development Center, Hanscom Field, MA, December 1, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Van Nostrand Reinhold

About this chapter

Cite this chapter

Schwering, F., Oliner, A.A. (1993). Millimeter-Wave Antennas. In: Lo, Y.T., Lee, S.W. (eds) Antenna Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2638-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2638-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-01594-7

  • Online ISBN: 978-1-4615-2638-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics