Skip to main content

Actin Polymerization: Regulation by Divalent Metal Ion and Nucleotide Binding, ATP Hydrolysis and Binding of Myosin

  • Chapter
Actin

Summary

Actin filaments are major dynamic components of the cytoskeleton of eukaryotic cells. Assembly of filaments from monomelic actin occurs with expenditure of energy, the tightly bound ATP being irreversibly hydrolyzed during polymerization. This dissipation of energy perturbs the laws of reversible helical polymerization defined by Oosawa and Asakura (1975), and affects the dynamics of actin filaments. We have shown that ATP hydrolysis destabilizes actin-actin interactions in the filament. The destabilization is linked to the liberation of Pi that follows cleavage of the γ-phosphate. Pi release therefore plays the role of a conformational switch. Because ATP hydrolysis is uncoupled from polymerization, the nucleotide content of the filaments changes during the polymerization process, and filaments grow with a stabilizing “cap” of terminal ADP-Pi subunits. The fact that the dynamic properties of F-actin are affected by ATP hydrolysis results in a non-linear dependence of the rate of filament elongation on monomer concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bigay, J., Deterre, P., Pfister, C., and Chabre, M., 1987, Fluoride complexes of aluminium or beryllium act on G-proteins as reversibly bound analogues of the γ-phosphate of GTP, EMBO J. 6: 2907.

    Google Scholar 

  • Carlier, M.-F., 1987, Measurement of Pi dissociation from actin filaments following ATP hydrolysis using an enzyme-linked assay. Biochem. Biophys. Res. Comm. 143: 1069.

    Article  Google Scholar 

  • Carlier, M.-F., Pantaloni, D., and Korn, E.D., 1984, Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state, J. Biol. Chem. 259: 9983.

    Google Scholar 

  • Carlier, M.-F., Pantaloni, D., and Korn, E.D., 1985, Polymerization of ADP-actin and ATP-actin under sonication and characteristics of the ATP-actin equilibrium polymer, J. Biol. Chem. 260: 6565.

    Google Scholar 

  • Carlier, M.-F., and Pantaloni, D., 1986, Kinetic evidence for F-ADP-Pi as a major transient in polymerization of ATP-actin, Biochemistry 25: 7789.

    Article  Google Scholar 

  • Carlier, M.-F., Pantaloni, D., and Korn, E.D., 1986, The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis, J. Biol Chem. 261: 10785.

    Google Scholar 

  • Carlier, M.-F., Pantaloni, D., and Korn, E.D., 1987, The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin, J. Biol. Chem. 262: 3052.

    Google Scholar 

  • Carlier, M.-F., Pantaloni, D., Evans, J.A., Lambooy, P.K., Korn, E.D., and Webb, M.R., 1987, The hydrolysis of ATP that accompanies actin polymerization is essentially irreversible, FEBS Lett. 235: 211.

    Google Scholar 

  • Carlier, M.-F., and Pantaloni, D., 1988, Binding of Pi to F-ADP-actin and characterization of the F-ADP-Pi filament, J. Biol. Chem. 263: 817.

    Google Scholar 

  • Carlier, M.-F., 1989, Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules, Int. Rev. Cytol. 115: 139.

    Article  Google Scholar 

  • Carlier, M.-F., 1991, Actin: protein structure and filament dynamics, J. Biol. Chem. 266: 1.

    Google Scholar 

  • Chaussepied, P., and Kasprzak, A.A. 1989, Isolation and characterization of the G-actin-myosin head complex, Nature 342: 950.

    Article  Google Scholar 

  • Combeau, C., and Carlier, M.-F., 1988, Probing the mechanism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phosphate BeF3 - and A1F4 -, J. Biol. Chem. 263: 17429.

    Google Scholar 

  • Combeau, C., and Carlier, M.-F., 1989, Characterization of the aluminium and beryllium fluoride species bound to F-actin and microtubules at the site of the γ-phosphate of the nucleotide, J. Biol. Chem. 264: 19017.

    Google Scholar 

  • Combeau, C., Didry, D., and Carlier, M.-F., 1992, Interaction between G-actin and myosin subfragment-1 probed by covalent crosslinking, J. Biol. Chem. 267: 14038.

    Google Scholar 

  • Dupuis, A., Israel, J.-P., and Vignais, P.V., 1989, Direct identification of the fluoroalumnate and fluoroberyl late species responsible for inhibition of the mitochondrial F1-ATPase, FEBS Lett. 255: 47.

    Article  Google Scholar 

  • Elzinga, M., and Phelan, J.J., 1984, F-actin is intermolecularly crosslinked by NN’phenylenedimaleimide through lysine 191 and cysteine 374. Proc. Nat. Acad. Sci. USA 81: 6599.

    Article  Google Scholar 

  • Fievez, S., and Carlier, M.-F., 1993, Conformational changes in subdomain-2 of G-actin upon polymerization into F-actin and upon binding myosin subfragment-1, FEBS Lett. 316: 186.

    Article  Google Scholar 

  • Goodno, C.C., 1979, Inhibition of myosin ATPase by vanadate ion. Proc. Natl. Acad. Sci. USA 76: 2620.

    Article  Google Scholar 

  • Hibberd, M.G., and Trentham, D.R., 1986, Relationships between chemical and mechanical events during muscular contraction. A. Rev. Biophys. Chem. 15: 119.

    Article  Google Scholar 

  • Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F., and Holmes, K.C., 1990, Atomic structure of the actin: DNase I complex. Nature Lond. 347: 37.

    Article  Google Scholar 

  • Korn, E.D., Carlier, M.-F., and Pantaloni, D., 1987, Actin polymerization and ATP hdyrolysis. Science, Wash. 238: 638.

    Article  Google Scholar 

  • Miller, L., Phillips, M., and Reisler, E., 1988, Polymerization of G-actin by myosin subfragment-1, J. Biol. Chem.. 263: 1996.

    Google Scholar 

  • Milligan, R.A., Whittaker, M., and Safer, D., 1990, Molecular structure of F-actin and location of surface binding sites, Nature 248: 217.

    Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E., and Kassab, R. 1981, Structure of the actin-myosin interface, Nature 292: 301.

    Article  Google Scholar 

  • Oosawa, F., and Asakura, S., 1975, Thermodynamics of the polymerization of protein, Academic Press, London.

    Google Scholar 

  • Orlova, A., and Egelman, E.H., 1992, Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis, J. Mol. Biol. 227: 104

    Article  Google Scholar 

  • Pantaloni, D., Carlier, M.-F., Coué, M., Lal, A.A., Brenner, S.L., and Korn, E.D., 1984, The critical concentration of actin in the presence of ATP increases with the number of filaments and approaches the critical concentration of ADP-actin, J. Biol Chem., 259: 6274.

    Google Scholar 

  • Phan, B., and Reisler, E., 1992, Inhibition of myosin ATPase by beryllium fluoride, Biochemistry 31: 4787.

    Article  Google Scholar 

  • Valentin-Ranc, C., and Carlier, M.-F., 1989, Evidence for the direct interaction between tightly bound divalent metal ion and ATP on actin. Binding of the A isomers of βγ-bidentate CrATP to actin. J. Biol. Chem. 264: 20871.

    Google Scholar 

  • Valentin-Ranc, C., and Carlier, M.-F., 1991, Role of ATP-bound divalent metal ion in the conformation and function of actin. J. Biol. Chem. 266: 7668.

    Google Scholar 

  • Valentin-Ranc, C., and Carlier, M.-F., 1992, Characterization of oligomers as kinetic intermediates in myosin subfragment-1 induced polymerization of G-actin, J. Biol. Chem. 267: 21543.

    Google Scholar 

  • Valentin-Ranc, C., Combeau, C., Carlier, M.-F., and Pantaloni, D., 1991, Myosin subfragment-1 interacts with two G-actin molecules in the absence of ATP. J. Biol. Chem. 266: 17872.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carlier, MF., Valentin-Ranc, C., Combeau, C., Fievez, S., Pantoloni, D. (1994). Actin Polymerization: Regulation by Divalent Metal Ion and Nucleotide Binding, ATP Hydrolysis and Binding of Myosin. In: Estes, J.E., Higgins, P.J. (eds) Actin. Advances in Experimental Medicine and Biology, vol 358. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2578-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2578-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6102-2

  • Online ISBN: 978-1-4615-2578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics