Skip to main content

Actin Regulation and Surface Catalysis

  • Chapter
Actin

Abstract

The motile behavior of non-muscle cells often differs between healthy and pathological conditions. Two disease processes, cancer and atherosclerosis, are associated with high morbidity and mortality in our society. The cells involved in both the pathogenesis of and me defense against these diseases undergo marked changes in the organization of their actin cytoskeletonl1,2. In response to a signal originating from the extracellular space, from surrounding cells, or as the result of a mutation, diseased cells initiate a process of motion away from their normal location. Local growth inhibitors are lost, and displaced cells undergo unchecked proliferation1. One example of such a phenomenon is the migration of fibroblasts and smooth muscle cells into the vascular intima and their proliferation in patients with atherosclerotic coronary artery disease2. Another example is the proliferation of metastatic cells distant from the site of primary tumor1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Van Roy F, Mareel M, Tumor invasion: effects of cell adhesion and motility. Trends Cell Biol. 2: 163 (1992).

    Article  PubMed  Google Scholar 

  2. Heldman AW, Furman MI, Gardner TM, Gips SJ, Crawford LE, Goldschmidt-Clermont PJ, Coronary artery disease and atherogenesis. in: Molecular Basis of Medicine, Dang CV and Feldman AM, eds., (1993) in press.

    Google Scholar 

  3. Cooper JA, The role of actin polymerization in cell motility. Annu Rev Physiol 53: 585 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. Howard K, Getting there? Curr Biol. 3: 103 (1993).

    Google Scholar 

  5. Luna EJ, Hitt AL, Cytoskeleton-plasma membrane interactions. Science 258: 955 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. Goldschmidt-Clermont PJ, Janmey PA, Profilin, a weak CAP for actin and RAS. Cell 66, 419 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. Friend CM, Catalysis on surfaces. Scientific American 268: 74 (1993).

    Article  CAS  Google Scholar 

  8. Yates JT, Surface chemistry. Chemical Engineering News 70: 22 (1992).

    Article  CAS  Google Scholar 

  9. Fukami K, Furuhashi K, Inagaki M, Endo T, Hatano S, Takenawa T, Requirement of phosphatidylinositol 4, 5 bisphosphate for α-actinin function. Nature 359: 150 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. Goldschmidt-Clermont PJ, Kim JW, Machesky LM, Rhee SG, Pollard TD, Regulation of phospholipase Cγ1 by profilin and tyrosine phosphorylation. Science 251: 1231 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. Finkel T, Theriot JA, Dise KR, Tomaselli GF, Goldschmidt-Clermont PJ, Actin superstructure promoted by profilin. Proc Natl Acad Sci USA (1993) in press.

    Google Scholar 

  12. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S, Oncogenes and signal transduction. Cell 64: 281 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD, The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase-C. Science 247: 1575 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. Machesky LM, Goldschmidt-Clermont PJ, Pollard TD, The affinities of human platelet and Acanthamoeba profilin isoforms for polyphosphoinositides account for their relative abilities to inhibit phospholipase C. Cell Regul 1: 937–950 (1990).

    PubMed  CAS  Google Scholar 

  15. Engel J, Fasold H, Hulla FW, Waechter F, Wegner A, The polymerization reaction of muscle actin. Mol Cell Biochem 18: 3 (1977).

    Article  PubMed  CAS  Google Scholar 

  16. Wegner A, Head to tail polymerization of actin. J Mol Biol. 108: 139–150, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Janmey PA, Hvidt S, Oster GF, Lamb J, Stossel TP, Hartwig JH, Effect of ATP on actin filament stiffness. Nature 347: 95 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. Pollard TD, Goldberg I, Schwarz WH, Nucleotide exchange, structure, and mechanical properties of filaments assembled from ATP-actin and ADP-actin. J Biol Chem 267: 20339 (1992).

    PubMed  CAS  Google Scholar 

  19. Theriot JA, Mitchison TJ, Actin microfilaments dynamics in locomoting cells. Nature 352: 126 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. Theriot JA, Mitchison TJ, The nucleation-release model of actin filament dynamics in cell motility. Trends Cell Biol. 2: 219 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. Mockrin SC, Korn ED, Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5’-triphosphate. Biochemistry 19: 5359 (1980).

    Article  PubMed  CAS  Google Scholar 

  22. Goldschmidt-Clermont PJ, Furman MI, Wachsstock D, Safer D, Nachmias VT, Pollard TD, The control of actin nucleotide exchange by thymosinb4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 3: 1015 (1992).

    PubMed  CAS  Google Scholar 

  23. Carlier M-F, Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. Int Rev Cytol 115: 139 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. Cooper JA, Effects of cytochalasin and phalloidin on actin. J Cell Biol. 105: 1473 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. Ridley AJ, Hall A, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A, The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. Bourne HR, Sanders DA, McCormick F, The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348: 125 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. Bourne HR, Sanders DA, McCormick F, The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117 (1991)

    Google Scholar 

  29. Goldschmidt-Clermont PJ, Mendelsohn ME, Gibbs JB, Rac and Rho in control. Curr Biol. 2: 669 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. Acknowledgements: This research was supported in part by a grant from Syntex, by a grant from the Bernard Foundation and by the American heart Association (G-I-A, Maryland Affiliate, Inc.). PJG-C was selected as a Syntex Scholar in 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crawford, L.E., Tucker, R.W., Heldman, A.W., Goldschmidt-Clermont, P.J. (1994). Actin Regulation and Surface Catalysis. In: Estes, J.E., Higgins, P.J. (eds) Actin. Advances in Experimental Medicine and Biology, vol 358. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2578-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2578-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6102-2

  • Online ISBN: 978-1-4615-2578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics