Skip to main content

The Role of Lactoferrin as an Anti-Inflammatory Molecule

  • Chapter
Lactoferrin

Part of the book series: Advances in, Experimental Medicine and Biology ((AEMB,volume 357))

Summary

The formation of hydroxyl radical via the iron catalyzed Haber-Weiss reaction has been implicated in phagocyte-mediated microbicidal activity and inflammatory tissue injury. The fact that neutrophils contain lactoferrin and mononuclear phagocytes have the capacity to acquire exogenous iron has suggested that iron bound to lactoferrin may influence the nature of free radical products generated by these cells. Over the years the iron-lactoferrin complex has been heralded as both a promoter and inhibitor of hydroxyl radical formation. This manuscript is intended to provide an overview of work performed to date related to this controversy and to present results of a number of preliminary studies which shed further light on the role of lactoferrin in inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Masson, PL, Heremans, JF, Dive, CH. (1966) Studies on lactoferrin, an iron-binding protein common to many external secretions. Clin. Chim.Acta 14:735–739.

    Article  CAS  Google Scholar 

  2. Wang-Iverson, P, Pryzwansky, KB, Spitznagel, JK, Cooney, MH. (1978) Bactericidal capacity of phorbol myristate acetate treated human polymorphonuclear leukocytes. Infect. Immun. 22:945–955.

    PubMed  CAS  Google Scholar 

  3. Cross, CE, Halliwell, B, Borish, ET, Pryor, WA, Saul, RL, McCord, JM, Harman, D. (1987) Oxygen radicals and human disease. Ann. Intern. Med. 107:526–545.

    PubMed  CAS  Google Scholar 

  4. Haber, F, Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. Lond. Math. Phys. Soc. 147:332–351.

    Article  CAS  Google Scholar 

  5. Halliwell, B, Gutteridge, JMC. (1986) Oxygen radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246:501–514.

    Article  PubMed  CAS  Google Scholar 

  6. Bannister, JV, Bannister, WH, Rotilio, G. (1987) Aspects of the structure, function, and applications of Superoxide dismutase. CRC Crit. Rev. Biochem. 22:111–180.

    Article  PubMed  CAS  Google Scholar 

  7. Fridovich, I. (1978) The biology of oxygen radicals: the Superoxide radical is an agent of oxygen toxicity; Superoxide dismutases provide an important defense. Science 201:875–880.

    Article  PubMed  CAS  Google Scholar 

  8. Root, RK, Cohen, MS. (1981) The microbicidal mechanisms of human neutrophils and eosinophils. Rev. Infect. Dis. 3:565–598.

    Article  PubMed  CAS  Google Scholar 

  9. Clark, RA. (1990) The human neutrophil respiratory burst oxidase. J. Infect. Dis. 161:1140–1147.

    Article  PubMed  CAS  Google Scholar 

  10. Klebanoff, S J, Hamon, CB,. (1972) Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J. Reticuloendothel. Soc. 12:170–196.

    PubMed  CAS  Google Scholar 

  11. Weiss, S J, Lampert, MD, Test, ST. (1983) Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science 222:625–628.

    Article  PubMed  CAS  Google Scholar 

  12. Tauber, AI, Borregaard, N, Simons, E, Wright, J. (1983) Chronic granulomatous disease: a syndrome of phagocyte oxidase deficiencies. Medicine (Baltimore) 62:286–308.

    CAS  Google Scholar 

  13. Nauseef, WM. (1990) Myeloperoxidase deficiency. Hematol. Pathol. 4: 165–178.

    PubMed  CAS  Google Scholar 

  14. Weiss, SJ. (1986) Oxygen, ischemia and inflammation. Acta Physiol. Scand. (suppl)548:9-37.

    Google Scholar 

  15. Till, GO, Johnson, KJ, Kunkel, R, Ward, PA. (1982) Intravascular activation of complement and acute lung injury: dependency on neutrophils and toxic oxygen metabolites. J. Clin. Invest. 69:1126–1135.

    Article  PubMed  CAS  Google Scholar 

  16. Shasby, DM, Vanbenthuysen, KM, Täte, RM, Shasby, SS, McMurthry, I, Repine, JE. (1982) Granulocytes mediate acute edematous lung injury in rabbits and in isolated rabbit lungs perfused with phorbol myristate acetate: role of oxygen radicals. Am. Rev. Respir. Dis. 125:443–447.

    PubMed  CAS  Google Scholar 

  17. Fox, RB. (1984) Prevention of granulocyte mediated lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea. J. Clin. Invest. 74: 1456–1464.

    Article  PubMed  CAS  Google Scholar 

  18. Ward, PA, Till, GO, Kunkel, R, Beauchamp, C. (1983) Evidence for the role of hydroxyl radical in complement and neutrophil-dependent tissue injury. J. Clin. Invest. 72:789–801.

    Article  PubMed  CAS  Google Scholar 

  19. Till, GO, Hatherill, JR, Tourtellotte, WW, Lutz, MJ, Ward, PA. (1985) Lipid peroxidation and acute lung injury after thermal trauma to skin. Am. J. Pathol. 119:376–384.

    PubMed  CAS  Google Scholar 

  20. Grootveld, M, Halliwell, B. (1986) Aromatic hydroxylation as a potential measure of hydroxyl radical formation in vivo. Biochem. J. 237:499–504.

    PubMed  CAS  Google Scholar 

  21. Weiss, S J, Rustagi, PK, LeBuglio, AF. (1978) Human granulocyte generation of hydroxyl radical. J. Exp. Med. 147:316–323.

    Article  PubMed  CAS  Google Scholar 

  22. Tauber, AI, Babior, BM. (1977) Evidence for hydroxyl radical production by human neutrophils. J. Clin. Invest. 60:374–379.

    Article  PubMed  CAS  Google Scholar 

  23. Repine, JE, Eaton, JW, Anders, MW, Ohidal, JR, Fox, RB. (1979) Generation of hydroxyl radical by enzymes, chemicals, and human phagocytes in vitro. J. Clin. Invest. 64:1642–1651.

    Article  PubMed  CAS  Google Scholar 

  24. Sagone, AL, Jr., Decker, MA, Wells, RM, Democko, C. (1980) A new method for the detection of hydroxyl radical production by phagocytic cells. Biochim. Biophys. Acta 628:90–97.

    Article  PubMed  CAS  Google Scholar 

  25. Ambruso, DR, Johnston, RB, Jr. (1981) Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil paniculate fractions and an enzymatic generating system. J. Clin. Invest. 67:352–360.

    Article  PubMed  CAS  Google Scholar 

  26. Weiss, S J, King, GW, LoBuglio, AF. (1977) Evidence for hydroxyl radical generation by human monocytes. J. Clin. Invest. 60:370–373.

    Article  PubMed  CAS  Google Scholar 

  27. Speer, CP, Ambruso, DR, Grimsley, J, Johnston, RB, Jr.. (1985) Oxidative metabolism in cord blood monocytes and monocyte-derived macrophages. Infect. Immun. 50:919–921.

    PubMed  CAS  Google Scholar 

  28. Hume, DA, Gordon, S, Thornalley, PJ, Bannister, JV. (1983) The production of oxygen-centered radicals by Bacillus-Calmette-Guerin-activated macrophages: an electron paramagnetic resonance study of the response to phorbol myristate acetate. Biochim. Biophys. Acta 763:245–250.

    Article  PubMed  CAS  Google Scholar 

  29. Cohen, MS, Britigan, BE, Hassett, DJ, Rosen, GM. (1988) Do human neutrophils form hydroxyl radical? Evaluation of an unresolved controversy. Free Radic. Biol. Med. 5:81–88.

    Article  PubMed  CAS  Google Scholar 

  30. Britigan, BE, Rosen, GM, Chai, Y, Cohen, MS. (1986) Do human neutrophils make hydroxyl radical? Detection of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry. J. Biol. Chem. 261:4426–4431.

    PubMed  CAS  Google Scholar 

  31. Pou, S, Cohen, MS, Britigan, BE, Rosen, GM. (1989) Spin trapping and human neutrophils: limits of detection of hydroxyl radical. J. Biol. Chem. 264:12299–12302.

    PubMed  CAS  Google Scholar 

  32. Britigan, BE, Coffman, TJ, Buettner, GR. (1990) Spin trap evidence for the lack of significant hydroxyl radical production during the respiration burst of human phagocytes using a spin adduct resistant to superoxide mediated destruction. J. Biol. Chem. 265:2650–2656.

    PubMed  CAS  Google Scholar 

  33. Thomas, MJ, Shirley, PS, Hedrick, C, DeChatelet, LR. (1986) Role of free radical processes in stimulated human polymorphonuclear leukocytes. Biochemistry 25:8042–8048.

    Article  PubMed  CAS  Google Scholar 

  34. Kaur, H, Fagerheim, Z, Grootveld, M., Puppo, A, Halliwell, B. (1988) Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radicals: application to activated neutrophils and heme protein leghemoglobin. Anal. Biochem. 172:360–367.

    Article  PubMed  CAS  Google Scholar 

  35. Greenwald, RA, Rush, SW, Mark, SA, Weitz, Z. (1989) Conversion of Superoxide generated by polymorphonuclear leukocytes to hydroxyl radical: a direct spectrophotometric detection system based on degradation of deoxyribose. Free Radic. Biol. Med. 6:385–392.

    Article  PubMed  CAS  Google Scholar 

  36. Winterbourn, CC. (1986) Myeloperoxidase as an effective inhibitor of hydroxyl radical production: implications for the oxidative reactions of neutrophils. J. Clin. Invest. 78:545–550.

    Article  PubMed  CAS  Google Scholar 

  37. Ramos, CL, Pou, S, Britigan, BE, Cohen, MS, Rosen, GM. (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J. Biol. Chem. 267:8307–8312.

    PubMed  CAS  Google Scholar 

  38. Bannister, JV, Bannister, WH, Hill, HAO, Thornalley, PJ. (1982) Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin. Biochim. Biophys. Acta 715:116–120.

    Article  PubMed  CAS  Google Scholar 

  39. Nakamura, M. (1990) Lactoferrin-mediated formation of oxygen radicals by NADPH-cytochrome P-450 reductase system. J. Biochem. 107:395–399.

    PubMed  CAS  Google Scholar 

  40. Britigan, BE, Cohen, MS, Rosen, GM. (1987) Detection of the production of oxygen-centered free radicals by human neutrophils using spin trapping techniques: a critical perspective. J. Leukocyte Biol. 41:349–362.

    PubMed  CAS  Google Scholar 

  41. Baldwin, DA, Jenny, ER, Aisen, P. (1984) The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from Superoxide and hydrogen peroxide. J. Biol. Chem. 259:13391–13394.

    PubMed  CAS  Google Scholar 

  42. Winterbourn, CC. (1983) Lactoferrin-catalyzed hydroxyl radical production: additional requirements for a chelating agent. Biochem. J. 210:15–19.

    PubMed  CAS  Google Scholar 

  43. Aruoma, OI, Halliwell, B. (1987) Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron: are lactoferrin and transferrin promoters of hydroxyl-radical generation? Biochem. J.241:273–278.

    CAS  Google Scholar 

  44. Britigan, BE, Edeker, BL. (1991) Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation. J. Clin. Invest. 88:1092–1102.

    Article  PubMed  CAS  Google Scholar 

  45. Cohen, MS, Mao, J, Rasmussen, GT, Serody, JS, Britigan, BE. (1992) Interaction of lactoferrin and lipopolysaccharide: effects on the antioxidant property of lactoferrin and thlactoferrinlactoferrinlac-tofelactoferrie ability of lipopolysaccharides to prime human neutrophils for enhanced Superoxide formation. J. Infect. Dis. 166:1375–1378.

    Article  PubMed  CAS  Google Scholar 

  46. Gutteridge, JMC, Paterson, SK, Segal, AW, Halliwell, B. (1981) Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem. J. 199:259–261.

    PubMed  CAS  Google Scholar 

  47. Buettner, GR. (1987) The reaction of Superoxide, formate radical, and hydrated electron with transferrin and its model compound, Fe(III)-ethylenediamine-N,N′-bis [2-(2-hydroxyphenyl) acetic acid] as studied by pulse radiolysis. J. Biol. Chem. 262:11995–11998.

    PubMed  CAS  Google Scholar 

  48. Klebanoff, S J, Waltersdorph, AM. (1990) Prooxidant activity of transferrin and lactoferrin. J. Exp. Med. 172:1293–1303.

    Article  PubMed  CAS  Google Scholar 

  49. Britigan, BE, Rosen, GM, Thompson, BY, Chai, Y, Cohen, MS. (1986) Stimulated neutrophils limit iron-catalyzed hydroxyl radical formation as detected by spin trapping techniques. J. Biol. Chem. 261: 17026–17032.

    PubMed  CAS  Google Scholar 

  50. Britigan, BE, Hassett, DJ, Rosen, GM, Hamill, DR, Cohen, MS. (1989) Neutrophil degranulation inhibits potential hydroxyl radical formation: differential impact of myeloperoxidase and lactoferrin release on hydroxyl radical production by iron supplemented neutrophils assessed by spin trapping. Biochem. J. 264:447–455.

    PubMed  CAS  Google Scholar 

  51. Molloy, AL, Winterbourn, CC. (1990) Release of iron from phagocytosed Escherichia coli and uptake by neutrophil lactoferrin. Blood 75:984–989.

    PubMed  CAS  Google Scholar 

  52. Vercellotti, GM, van Asbeck, BS, Jacob, HS. (1985) Oxygen radical-induced erythrocyte hemolysis by neutrophils: critical role of iron and lactoferrin. J. Clin. Invest. 76:956–962.

    Article  PubMed  CAS  Google Scholar 

  53. Gallin, JI. (1985) Neutrophil specific granule deficiency. Ann. Rev. Med. 36:263–274.

    Article  PubMed  CAS  Google Scholar 

  54. Boxer, LA, Coates, TD, Haak, RA, Wolach, JB, Hoffstein, S, Baehner, RL. (1982) Lactoferrin deficiency associated with altered granulocyte function. N. Engl. J. Med. 307:404–410.

    Article  PubMed  CAS  Google Scholar 

  55. Harris, P, Ralph, P. (1985) Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J. Leukocyte Biol. 37:407–422.

    PubMed  CAS  Google Scholar 

  56. Thompson, BY, Sivam, G, Britigan, BE, Rosen, GM, Cohen, MS. (1988) The O2 Metabolism of the HL-60 cell line: comparison of the effects of monocytoid and neutrophilic differentiation. J. Leukocyte Biol. 43:140–147.

    PubMed  CAS  Google Scholar 

  57. van Snick, JL, Masson, PL, Heremans, JF. (1974) The involvement of lactoferrin in the hyposideremia of acute inflammation. J. Exp. Med. 140: 1068–1084.

    Article  PubMed  Google Scholar 

  58. Winterbourn, CC, Monteiro, HP, Galilee, CF. (1990) Ferritin-dependent lipid peroxidation by stimulated neutrophils: Inhibition by myeloperoxidase-derived hypochlorous acid but not by endogenous lactoferrin. Biochim. Biophys. Acta Mol. Cell Res. 1055:179–185.

    Article  CAS  Google Scholar 

  59. Yamada, Y, Amagasaki, T, Jacobsen, DW, Green, R. (1987) Lactoferrin binding by leukemia cell lines. Blood 70:264–270.

    PubMed  CAS  Google Scholar 

  60. Bennett, RM, Davis, J, Campbell, S, Portnoff, S. (1983) Lactoferrin binds to cell membrane DNA: association of surface DNA with an enriched population of B cells and monocytes. J. Clin. Invest. 71:611–618.

    Article  PubMed  CAS  Google Scholar 

  61. Campbell, EJ. (1982) Human leukocyte elastase, cathepsin G, and lactoferrin: family of neutrophil granule glycoproteins that bind to an alveolar macrophage receptor. Proc. Natl. Acad. Sci. USA 79:6941–6945.

    Article  PubMed  CAS  Google Scholar 

  62. Birgens, HS, Hansen, NE, Karle, H, Kristensen, LO. (1983) Receptor binding of lactoferrin to human monocytes. Br. J. Haematol. 54:383–391.

    Article  PubMed  CAS  Google Scholar 

  63. Birgens, HS, Kristensen, LO. (1990) Impaired receptor binding and decrease in isoelectric point of lactoferfin after interaction with human monocytes. Eur. J. Haematol. 45:31–35.

    Article  PubMed  CAS  Google Scholar 

  64. Birgens, HS, Kfistensen, LO, Borregaard, N, Karle, H, Hansen, NE. (1988) Lactoferrin-mediated transfer of iron to intracellular ferritin in human monocytes. Eur. J. Haematol. 41:52–57.

    Article  PubMed  CAS  Google Scholar 

  65. Lima, MF, Kierszenbaum, F. (1985) Lactoferrin effects on phagocytic cell function. I. Increased uptake and killing of an intracellular parasite by murine macrophages and human monocytes. J. Immunol. 134:4176–4183.

    CAS  Google Scholar 

  66. Miyazawa, K, Mantel, C, Lu, L, Morrison, DC, Broxmeyer, HE. (1991) Lactoferrin-lipopolysaccharide interactions: Effect on lactoferrin binding to monocyte/macrophage-differentiated HL-60 cells. J. Immunol. 146:723–729.

    PubMed  CAS  Google Scholar 

  67. Britigan, BE, Serody, JS, Hayek, MB, Charniga, LM, Cohen, MS. (1991) Uptake of lactoferrin by mononuclear phagocytes inhibits their ability to form hydroxyl radical and protects them from membrane autoperoxidation. J. Immunol. 147:4271–4277.

    PubMed  CAS  Google Scholar 

  68. Imber, MJ, Pizzo, SV. (1983) Clearance and binding of native and defucosylated lactoferrin. Biochem. J. 212:249–257.

    PubMed  CAS  Google Scholar 

  69. Moguilevsky, N., Courtoy, P.J. and Masson, P.L. Study of lactoferrin-binding sites at the surface of blood monocytes. In: Proteins of Iron Storage and Transport, edited by Spik, G., Montreuil, J., Crichton, R.R. and Mazurier, J. Amsterdam: Elsevier Science Publishers, B.V., 1985, p. 199–202.

    Google Scholar 

  70. Bennett, RM, Davis, J. (1981) Lactoferrin binding to human peripheral blood cells: interaction with a B-enriched population of lymphocytes and a subpopulation of adherent mononuclear cells. J. Immunol. 127:1211–1216.

    PubMed  CAS  Google Scholar 

  71. Schraufstatter, IU, Hinshaw, DB, Hyslop, PA, Spragg, RG, Cochrane, CG. (1986) Oxidant injury of cells: DNA strand breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin. Invest. 77:1312–1320.

    Article  PubMed  CAS  Google Scholar 

  72. Birnboim, HC. (1982) DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate. Science 215:1247–1249.

    Article  PubMed  CAS  Google Scholar 

  73. Steinmann, G, Broxmeyer, HE, de Harven, E, Moore, MAS. (1982) Immuno-electron microscopic tracing of lactoferrin, a regulator of myelopoiesis, into a subpopulation of human peripheral blood monocytes. Br.J. Haematol. 50:75–84.

    Article  PubMed  CAS  Google Scholar 

  74. Derisbourg, P, Wieruszeski, J-M, Montreuil, J, Spik, G. (1990) Primary structure of glycans isolated from human leucocyte lactotransferrin: absence of fucose residues questions the proposed mechanism of hyposideraemia. Biochem. J. 269:821–825.

    PubMed  CAS  Google Scholar 

  75. Borregaard, N, Heiple, JM, Simons, ER, Clark, RA. (1983) Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase. Translocation during activation. J. Cell Biol. 97:52–61.

    Article  CAS  Google Scholar 

  76. Thomas, RM, Nauseef, WM, Iyer, SS, Peterson, MW, Stone, PJ, Clark, RA. (1991) A cytosolic inhibitor of human neutrophil elastase and cathepsin G. J. Leukocyte Biol. 50:568–579.

    PubMed  CAS  Google Scholar 

  77. Howell, DR, Britigan, BE, Fick, RB, Jr., Cox, CD. (1990) Levels of iron and iron-binding proteins in bronchoalveolar lavage fluids of cystic fibrosis subjects. Clin. Res. 38:274A. (Abstract)

    Google Scholar 

  78. Roiron, D, Amouric, M, Marvaldi, J, Figarella, C. (1989) Lactoferrin-binding sites at the surface of HT29-D4 cells: comparison with transferrin. Eur. J. Biochem. 186:367–373.

    Article  PubMed  CAS  Google Scholar 

  79. Morgan, CL, Stanley, ER. (1984) Chemical cross linking of the mononuclear phagocyte specific growth factor CSF-1 to its receptor at the cell surface. Biochem. Biophys. Res. Commun. 119:35–41.

    Article  PubMed  CAS  Google Scholar 

  80. Pilch, PF, Czech, MN. (1979) Interaction of cross-linking agents with the insulin effector system of isolated fat cells. Covalent linkage of 1251-insulin to a plasma membrane protein of 140,000 daltons. J. Biol. Chem. 254:3375–3381.

    CAS  Google Scholar 

  81. Mazurier, J, Montreuil, J Spik, G. (1985) Visualization of lactotransferrin brush-border receptors by ligand-blotting. Biochim. Biophys. Acta 821:453–460.

    Article  PubMed  CAS  Google Scholar 

  82. Thaler, CJ, Vanderpuye, OA, McIntyre, JA Faulk, WP. (1990) Lactoferrin binding molecules in human seminal plasma. Biol. Reprod. 43:712–717.

    Article  PubMed  CAS  Google Scholar 

  83. Mazurier, J, Legrand, D, Hu, WL, Montreuil, J Spik, G. (1989) Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes: isolation of the receptors by antiligand affinity chromatography. Eur. J. Biochem. 179:481–487.

    Article  PubMed  CAS  Google Scholar 

  84. Kawakami, H, Lönnerdal, B. (1991) Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes. Am.J. Physiol. Gastrointest. Liver Physiol 261:G841–G846.

    CAS  Google Scholar 

  85. Hurst, JK, Barrette, WC, Jr.. (1989) Leukocyte oxygen activations and microbicidal oxidative toxins. CRC Crit. Rev. Biochem. Molec. Biol. 24:271–328.

    Article  CAS  Google Scholar 

  86. Winterbourn, CC, Malloy, AL. (1988) Susceptibilities of lactoferrin and transferrin to myeloperoxidasedependent loss of iron-binding capacity. Biochem. J. 250:613–616.

    PubMed  CAS  Google Scholar 

  87. Clark, RA Pearson, DW. (1989) Inactivation of transferrin iron binding capacity by the neutrophil myeloperoxidase system. J. Biol. Chem. 264:9420–9427.

    PubMed  CAS  Google Scholar 

  88. Doring, G, Pfestorf, M., Botzenhart, K Abdallah, MA. (1988) Impact of proteases on iron uptake of Pseudomonas aeruginosa pyoverdin from transferrin and lactoferrin. Infect. Immun. 56:291–293.

    PubMed  CAS  Google Scholar 

  89. Brines, RD Brock, JH. (1983) The effect of trypsin and chymotrypsin on the in vitro antimicrobial and iron-binding properties of lactoferrin in human milk and bovine colostrum: unusual resistance of human apolactoferrin to proteolytic digestion. Biochim. Biophys. Acta 759:229–235.

    Article  PubMed  CAS  Google Scholar 

  90. Line, WF, Sly, DA, Bezkorovainy, A. (1976) Limited cleavage of human lactoferrin with pepsin. Int. J. Biochem. 9:203–208.

    Article  Google Scholar 

  91. Bluard-Deconinck, J-M, Williams, J, Evans, RW, van Snick, J, Osinski, PA Masson, PL. (1978) Ironbinding fragments from the N-terminal and C-terminal regions of human lactoferrin. Biochem. J. 171:321–327.

    PubMed  CAS  Google Scholar 

  92. Evans, RW, Williams, J. (1978) Studies of the binding of different iron donors to human serum transferrin and isolation of iron-binding fragments from the N-and C-terminal regions of the protein. Biochem. J. 173:543–552.

    PubMed  CAS  Google Scholar 

  93. Esparza, I Brock, JH. (1980) The effect of trypsin digestion on the structure and iron-donating properties of transferons from several species. Biochim. Biophys. Acta 622:297–307.

    Article  PubMed  CAS  Google Scholar 

  94. Britigan, BE, Hayek, MB, Doebbeling, BN, and Fick, RB, Jr. (1993) Transferrin and lactoferrin undergo proteolytic cleavage in the Pseudomonas aeruginosa-infected lungs of patients with cystic fibrosis. Infect. Immun. 61:5049–5055.

    PubMed  CAS  Google Scholar 

  95. Ellison, RT, III Giehl, TJ. (1991) Killing of Gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Invest. 88:1080–1091.

    Article  PubMed  CAS  Google Scholar 

  96. Guthrie, LA, McPhail, LC, Henson, PM Johnston, RB, Jr. (1984) The priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide: Evidence for increased activity of the superoxide-producing enzyme. J. Exp. Med. 160:1656–1671.

    Article  PubMed  CAS  Google Scholar 

  97. Vosbeck, K, Tobias, P, Mueller, H, Allen, RA, Arfors, K-E, Ulevitch, RJ Sklar, LA. (1990) Priming of polymorphonuclear granulocytes by lipopolysaccharides and its complexes with lipopolysaccharide binding protein and high density lipoprotein. J. Leukocyte Biol. 47:97–104.

    PubMed  CAS  Google Scholar 

  98. Wollenweber, H-W Morrison, DC. (1985) Synthesis and biochemical characterization of a photoac-tivable, iodinatable, cleavable bacterial lipopolysaccharide derivative. J. Biol. Chem. 260: 15068–15074.

    PubMed  CAS  Google Scholar 

  99. Berger, D Berger, HG. (1987) Evidence for endotoxin binding capacity of human Gc-globulin and transferrin. Clin. Chim.Acta 163:289–299.

    Article  PubMed  CAS  Google Scholar 

  100. Gahr, M, Speer, CP, Damerau, B Sawatzki, G. (1991) Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. J. Leukocyte Biol. 49:427–433.

    PubMed  CAS  Google Scholar 

  101. Britigan, BE, Hayek, MB, Doebbeling, BN, and Fick, RB, Jr. (1993) Transferrin and lactoferrin undergo proteolytic cleavage in the pseudomonas aeruginosa infected lungs of patients with cystic fibrosis. Infect. Immun. 61:5049–5055.

    PubMed  CAS  Google Scholar 

  102. Zagulski, T, Lipinski, P, Zagulska, A, Broniek, S Jarzabek, Z. (1989) Lactoferrin can protect mice against a lethal dose of Echerichia coli in experimental infection in vivo. Br.J. Exp. Path. 70:697–704.

    CAS  Google Scholar 

  103. Gutteberg, TJ, Osterud, B, Volden, G Jorgensen, T. (1990) The production of tumour necrosis factor, tissue thromboplastin, lactoferrin and cathepsin C during lipopolysaccharide stimulation in whole blood. Scand. J. Clin. Lab. Invest. 50:421–427.

    Article  PubMed  CAS  Google Scholar 

  104. Nuijens, JH, Abbink, JJ, Wachtfogel, YT, Colman, RW, Eerenberg, AJM, Dors, D, Kamp, AJM, Strack van Schijndel, RJM, Thijs, LG Hack, CE. (1992) Plasma elastase, α1-antitrypsin and lactoferrin in sepsis: Evidence for neutrophils as mediators in fatal sepsis. J. Lab. Clin. Med. 119:159–168.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Britigan, B.E., Serody, J.S., Cohen, M.S. (1994). The Role of Lactoferrin as an Anti-Inflammatory Molecule. In: Hutchens, T.W., Rumball, S.V., Lönnerdal, B. (eds) Lactoferrin. Advances in, Experimental Medicine and Biology, vol 357. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2548-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2548-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6087-2

  • Online ISBN: 978-1-4615-2548-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics