Skip to main content

Thermal Stability and the Suppression of Convection in a Rotating Fluid on Earth

  • Chapter
Materials Processing in High Gravity

Abstract

Thermal stability in a rotating fluid on earth is examined. Thermal stability refers here to the fluid state where convection is absent or at a minimum even in the presence of thermally induced density gradients. We examine the conditions which bring about thermal stability in a rotating fluid on earth through numerical simulations. It is shown that at least one thermal field exists for a rotating fluid with a gravitational background field where convection does not occur. The numerical model used is three-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. Matthiesen, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1988).

    Google Scholar 

  2. D. J. Tritton, “Physical Fluid Dynamics,” Second Edition, Oxford University Press, New York (1988).

    Google Scholar 

  3. W. Weber, G. Neumann and G. Müller, “Stabilizing Influence of the Coriolis Force During Melt Growth on a Centrifuge,” J. Crystal Growth, 100: 145 (1990).

    Article  CAS  Google Scholar 

  4. H. Rodot, L. L. Regel, and A. M. Turtchaninov, “Crystal Growth of IV-VI Semiconductors in a Centrifuge,” J. Crystal Growth, 104: 280 (1990).

    Article  CAS  Google Scholar 

  5. W. A. Arnold, Ph.D. thesis, Clarkson University, Potsdam, New York (1993).

    Google Scholar 

  6. M. Engelman, FIDAP Theoretical Manual, Fluid Dynamics International, Inc., 500 Davis Street, Suite 600, Evanston, Illinois 60201 (1990).

    Google Scholar 

  7. V. M. Glazov, S. N. Chizhevskaya and N. N. Glagoleva, “Liquid Semiconductors,” Plenum Press, New York (1969).

    Google Scholar 

  8. T. Iida and R. I. L. Guthrie, “The Physical Properties of Liquid Metals,” Oxford University Press, New York (1988).

    Google Scholar 

  9. Y.S. Touloukian and E. H. Buyco, “Thermophysical Properties of Matter,” Vol. 4, IFI/Plenum Data Corp., New York (1970).

    Google Scholar 

  10. D. Haliday and R. Resnick, “Fundamentals of Physics,” Second Edition, John Wiley and Sons Inc., New York: 278 (1986).

    Google Scholar 

  11. NASA Invention Disclosure, submitted by W. A. Arnold, NASA GSRP (1992).

    Google Scholar 

  12. R. Bird, W. Stewart and E. Lightfoot, “Transport Phenomena,” John Wiley and Sons Inc., New York: 45 and 98 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Liya L. Regel William R. Wilcox

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arnold, W.A., Regel, L.L. (1994). Thermal Stability and the Suppression of Convection in a Rotating Fluid on Earth. In: Regel, L.L., Wilcox, W.R. (eds) Materials Processing in High Gravity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2520-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2520-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6073-5

  • Online ISBN: 978-1-4615-2520-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics