Skip to main content

Low Power Arithmetic Components

  • Chapter
Low Power Design Methodologies

Abstract

Minimizing the power consumption of circuits is important for a wide variety of applications, both because of the increasing levels of integration and the desire for portability. Since performance is often limited by the arithmetic components’ speed, it is also important to maximize the speed. Frequently, the compromise between these two conflicting demands of low power dissipation and high speed can be accomplished by selecting the optimum circuit architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Perspective, Addison-Wesley Publishing Company, 1988.

    Google Scholar 

  2. G. Kissin, “Measuring Energy Consumption in VLSI Circuits: A Foundation,”Proceedings of the 14th ACM Symposium on the Theory of Computingpp. 99–104, 1982.

    Google Scholar 

  3. M. Cirit,“Estimating Dynamic Power Consumption of CMOS Circuits,”ICCADpages 534–537, 1987.

    Google Scholar 

  4. U. Jagau, “SIMCURRENT - An Efficient Program for the Estimation of the Current Flow of Complex CMOS Circuits,”DACpp. 396–399, 1990.

    Google Scholar 

  5. T. K. Callaway and E. E. Swartzlander, Jr., “Optimizing Adders for WSI,” InIEEE International Conference on Wafer Scale Integrationpp. 251–260, 1992.

    Google Scholar 

  6. T. K. Callaway and E. E. Swartzlander, Jr., “Optimizing Arithmetic Elements for Signal Processing,” VLSI Signal Processing, V, pp. 91–100, 1992.

    Google Scholar 

  7. S. Devadas, K. Keutzer, and J. White, “Estimation of Power Dissipation in CMOS Combinational Circuits Using Boolean Function Manipulation,”IEEE Transactions on CADvol. 11, pp. 373–380, 1992.

    Google Scholar 

  8. D. Goldberg. “Computer Arithmetic,” In D. A. Patterson and J. A. HennesseyComputer Architecture: A Quantitative ApproachMorgan Kaufmann Publishers, 1990, pp. A2, A3, A31–A39.

    Google Scholar 

  9. O. L. MacSorley, “High-Speed Arithmetic in Binary Computers,”IRE Proceedingsvol. 49, pp. 67–91, 1961.

    Article  MathSciNet  Google Scholar 

  10. O. J. Bedrij, “Carry-Select Adder,”IRE Transactions on Electronic Computersvol. EC-11, pp. 340–346, 1962.

    Article  Google Scholar 

  11. J. Sklansky, “Conditional-Sum Addition Logic,” IRE Transactions on Electronic Computers, vol. EC-9, pp. 226–231,1960.

    Article  MathSciNet  Google Scholar 

  12. S. Turrini, “Optimal Group Distribution in Carry-Skip Adders,”Proceedings of the 9th Symposium on Computer Arithmeticpp. 96–103, 1989.

    Google Scholar 

  13. P. K. Chan, et al, “Delay Optimization of Carry-Skip Adders and Block Carry-Lookahead Adders Using Multidimensional Dynamic Programming,”IEEE Transactions on Computersvol. EC-41, pp. 920–930, August 1992.

    Article  Google Scholar 

  14. A. Aggarwal, A. Chandra, and P. Raghavan, “Energy Consumption in VLSI Circuits,”Proceedings of the 20th Annual ACM Symposium on the Theory of Computingpp. 205–216, 1988.

    Google Scholar 

  15. P. M. Chau and S. R. Powell, “Estimating Power Dissipation of VLSI Signal Process-ing Chips: The PFA Technique,”Journal of VLSI Signal Processing 4pp. 250–259, 1990.

    Google Scholar 

  16. C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions on Electronic Computers, EC-13, pp. 14–17, 1964.

    Article  MATH  Google Scholar 

  17. L. Dadda, “Some Schemes for Parallel Multipliers,”Alta Frequenza34, pp. 349–356,1965.

    Google Scholar 

  18. C. Lemonds and S. S. Shetti, “A Low Power 16 by 16 Multiplier Using Transition Reduction Circuitry,”Proceedings of the 1994 International Workshop on Low Power Designpp. 139–142, 1994.

    Google Scholar 

  19. C. Nagendra, R. M. Owens, and M. J. Irwin, “Power-Delay Characteristics of CMOS Adders,”IEEE Transactions on VLSI Systemsvol. 2, pp. 377–381, September 1994.

    Article  Google Scholar 

  20. A. Chandrakasan, S. Sheng, and R. Broderson, “Low Power CMOS Digital Design,” IEEE Journal of Solid-State Circuits, SC-27, pp. 685–691, 1992.

    Article  Google Scholar 

  21. J. E. Robertson, “A New Class of Digital Division Methods,” IRE Transactions on Electronic Computers, EC-7, pp. 681–687, 1958.

    Google Scholar 

  22. M. J. Flynn, “On Division by Functional Iteration,” IEEE Transactions on Computers, C-19, pp. 702–706, 1970.

    Article  MATH  Google Scholar 

  23. D. L. Fowler and J. E. Smith, “An Accurate High Speed Implementation of Division by Reciprocal Approximation,”Proceedings of the 9th Symposium on Computer Arithmeticpp. 60–67, 1989.

    Google Scholar 

  24. D. D. Sarma and D. W. Matula, “Measuring the Accuracy of ROM Reciprocal Tables,”Proceedings of the 11th Symposium on Computer Arithmeticpp. 95–102,1993.

    Google Scholar 

  25. N. F. Goncalves and H. J. De Man, “NORA: A Racefree Dynamic CMOS Technique for Pipelined Logic Structures,” IEEE Journal of Solid-State Circuits, SC-18, pp. 261–266, 1983.

    Article  Google Scholar 

  26. L. G. Heller, W. R. Griffen, J. W. Davis, and N. G. Thoma, “Cascode Voltage Switch Logic: A Differential CMOS Logic Family,”International Solid State Circuits Conferencepp. 16–17, 1984.

    Google Scholar 

  27. K. M. Chu and D. L. Pulfrey, “A Comparison of CMOS Circuit Techniques: Differential Cascode Voltage Switch Logic Versus Conventional Logic,” IEEE Journal of Solid-State Circuits, SC-22, pp. 528–532, 1987.

    Article  Google Scholar 

  28. J. Wang, C. Wu, and M. Tsai, “CMOS Nonthreshold Logic (NTL) and Cascode Non-threshold Logic (CNTL) for High-Speed Applications,” IEEE Journal of Solid-State Circuits, SC-24, pp. 779–786, 1989.

    Article  Google Scholar 

  29. S. L. Lu and M. D. Ercegovac, “Evaluation of Two Summand Adders Implemented in ECDL CMOS Differential Logic,” IEEE Journal of Solid-State Circuits, SC-26, pp. 1152–1160, 1991.

    Article  Google Scholar 

  30. M. Maleki and S. Kiaei, “Enhancement Source-Coupled Logic for Mixed-Mode VLSI Circuits,”IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processingvol. 39, pp. 399–402, 1992.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Callaway, T.K., Swartzlander, E.E. (1996). Low Power Arithmetic Components. In: Rabaey, J.M., Pedram, M. (eds) Low Power Design Methodologies. The Springer International Series in Engineering and Computer Science, vol 336. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2307-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2307-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5975-3

  • Online ISBN: 978-1-4615-2307-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics