Skip to main content

Genetic Abnormalities in Blood Group Serology

  • Chapter
Hereditary Diseases and Blood Transfusion

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 30))

  • 39 Accesses

Abstract

Laboratory and clinical investigation of red blood cell (RBC) incompatibility between patient and donor in the context of transfusion has led to the identification of blood groups whose expression is genetically determined. Blood group antigens are polymorphic, inherited, structural characteristics that are located on proteins, glycoproteins or glycolipids on the exofacial surface of the RBC membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis M, Anstee DJ, Bird GWG, et al. Blood group terminology 1990. Vox Sang 1990;58:152–59.

    Article  Google Scholar 

  2. Telen MJ, Rao N. Recent advances in immunohematology. Curr Opinion in Hematol 1994;1:143–50.

    CAS  Google Scholar 

  3. Ho M, Chelly J, Carter N, Danek A, Crocker P, Monaco AP. Isolation of the gene for McLeod syndrome that encodes a novel membrane transport protein. Cell 1994; 77:869–80.

    Article  PubMed  CAS  Google Scholar 

  4. Anstee DJ. Blood group-active surface molecules of the human red blood cell. Vox Sang 1990;58:1–20.

    Article  PubMed  CAS  Google Scholar 

  5. Anstee DJ, Mallinson G. The biochemistry of blood group antigens. Some recent advances. Vox Sang 1994;67(suppl 3):1–6.

    Article  PubMed  CAS  Google Scholar 

  6. Colin Y, Bailly P, Cartron J-P. Molecular genetic basis of RH and LW blood groups. Vox Sang 1994;67(suppl 3):67–72.

    Article  PubMed  CAS  Google Scholar 

  7. Cherif-Zahar B, Bloy C, Le van Kim C, et al. Molecular cloning and protein structure of a human blood group Rh polypeptide. Proc Natl Acad Sci USA 1990;87:6243–47.

    Article  PubMed  CAS  Google Scholar 

  8. Le van Kim C, Mouro I, Cherif-Zahar B, et al. Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc Natl Acad Sci USA 1992;89:10925–29.

    Article  Google Scholar 

  9. Avent N, Ridgwell K, Tanner MJA, Anstee DJ. cDNA cloning of a 30 kD erythrocyte membrane protein associated with Rh (rhesus)-blood-group-antigen expression. Biochem J 1990;271:821–25.

    PubMed  CAS  Google Scholar 

  10. Chaudhuri A, Polyakova J, Zbrzezna V, Williams K, Gulati S, Pogo AO. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc Natl Sci Acad USA 1993;90:10793–97.

    Article  CAS  Google Scholar 

  11. Bartels CF, Zelinski T, Lockridge O. Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for the YT blood group polymorphism. Am J Hum Genet 1993;53:928–36.

    Google Scholar 

  12. Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: Member of an ancient channel family. Proc Natl Acad Sci USA 1991;88:11110–14.

    Article  PubMed  CAS  Google Scholar 

  13. Smith BL, Preston GM, Spring FA, Anstee DJ, Agre P. Human red cell aquaporin CHIP. 1. Molecular characterization of ABH and Colton blood group antigens. J Clin Invest 1994;94:1043–49.

    Article  PubMed  CAS  Google Scholar 

  14. Medof ME, Lublin DM, Holers VM, et al. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci USA 1987;84:2007–11.

    Article  PubMed  CAS  Google Scholar 

  15. Caras IW, Davitz MA, Rhee L, Weddell G, Martin DW jr, Nussenzweig V. Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 1987;325:545–49.

    Article  PubMed  CAS  Google Scholar 

  16. Lee S, Zambas E, Marsh WL, Redman CM. Molecular cloning and primary structure of Kell blood group protein. Proc Natl Acad Sci USA 1991;88:6353–57.

    Article  PubMed  CAS  Google Scholar 

  17. Spring FA, Bruce LJ, Anstee DJ, Tanner MJA. A red cell band 3 variant with altered stilbene disulphonate binding is associated with the Diego (Dia) blood group antigen. Biochem J 1992;288:713–16.

    PubMed  CAS  Google Scholar 

  18. Parsons SF, Mawby WJ, Anstee DJ. Lutheran blood group glycoprotein is a member of the immunoglobulin superfamily of proteins. Vox Sang 1994;67(suppl 2):1.

    Google Scholar 

  19. Ellis NA, Ye T-Z, Patton S, German J, Goodfellow PN, Weller P. Cloning of PBDX, an MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp. Nature Genet 1994;6:394–400.

    Article  PubMed  CAS  Google Scholar 

  20. Ellis NA, Tippett P, Petty A, et al. PBDX is the XG blood group gene. Nature Genet 1994;8:285–90.

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt PJ, Vos GH. Multiple phenotype abnormalities associated with Rhnull (---/---). Vox Sang 1967;13:18–20.

    Article  PubMed  CAS  Google Scholar 

  22. Nash R, Shojania AM. Hematological aspect of Rh deficiency syndrome: A case report and a review of the literature. Am J Hematol 1987;24:267–74.

    Article  PubMed  CAS  Google Scholar 

  23. Lauf PK, Joiner CH. Increased potassium transport and ouabain binding in human Rhnull red blood cells. Blood 1976;48:457–68.

    PubMed  CAS  Google Scholar 

  24. Ballas SK, Clark MR, Mohandas N, et al. Red cell membrane and cation deficiency in Rhnull syndrome. Blood 1984;63:1046–55.

    PubMed  CAS  Google Scholar 

  25. Lauf PK. Membrane transport changes in Rhnull erythrocytes. In: Stean EA (ed). Cellular antigens and disease. Washington DC: American Association of Blood 1977:41.

    Google Scholar 

  26. Wimer BM, Marsh WL, Taswell HF, Galey WR. Haematological changes associated with the McLeod phenotype of the Kell blood group system. Brit J Haematol 1977; 36:219–24.

    Article  CAS  Google Scholar 

  27. Marsh WL, Redman CM. Recent developments in the Kell blood group system. Transf Med Rev 1987;1:4–13.

    Article  CAS  Google Scholar 

  28. Udden MM, Umeda M, Hirano Y, Marcus DM. New abnormalities in the morphology, cell surface receptors, and electrolyte metabolism of In(Lu) erythrocytes. Blood 1987;69:52–57.

    PubMed  CAS  Google Scholar 

  29. Anstee DJ, Parsons SF, Ridgwell K, et al. Two individuals with elliptocytic red cells apparently lack three minor red cell membrane sialoglycoproteins. Biochem J 1984; 218:615–19.

    PubMed  CAS  Google Scholar 

  30. Daniels GL, Shaw M-A, Judson PA, et al. A family demonstrating inheritance of the Leach phenotype: A Gerbich negative phenotype associated with eiliptocytosis. Vox Sang 1986;50:117–22.

    Article  PubMed  CAS  Google Scholar 

  31. Reid ME, Martynewycz M-A, Wolford EE, Crawford MN, Miller LH. Leach type Ge-red cells and eiliptocytosis. Transfusion 1987;27:213–14(letter).

    Article  PubMed  CAS  Google Scholar 

  32. Rountree J, Chen J, Moulds MK, Moulds JJ, Green AM, Telen MJ. A second family demonstrating inheritance of the Leach phenotype. Transfusion 1989;29(suppl): 15S(abstract).

    Google Scholar 

  33. McShane K, Chung A. A novel human alloantibody in the Gerbich system. Vox Sang 1989;57:205–8.

    Article  PubMed  CAS  Google Scholar 

  34. Discher D, Knowles D, McGee S, et al. Mechanical linkage between red cell skeleton and plasma membrane is not a demonstrated function of protein 4.1. Blood 1993;82 (suppl 1):309a.

    Google Scholar 

  35. Telen MJ, Le van Kim C, Chung A, Cartron J-P, Colin Y. Molecular basis for eiliptocytosis associated with glycophorin C deficiency in the Leach phenotype. Blood 1991;78:1603–6.

    PubMed  CAS  Google Scholar 

  36. Cartron J-P, Rahuel C. Human erythrocyte glycophorins: Protein and gene structure analysis. Transf Med Rev 1992;6:63–92.

    Article  CAS  Google Scholar 

  37. Daniels G. The Lutheran blood group system: Monoclonal antibodies, biochemistry and the effect of In(Lu). In: Pierce SR, Macpherson CR (eds). Blood group systems: Duffy, Kidd and Lutheran. Arlington, VA: American Association of Blood Banks 1986:133.

    Google Scholar 

  38. Preston GM, Smith BL, Zeidel ML, Moulds JJ, Agre P. Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 1994; 265:1585–87.

    Article  PubMed  CAS  Google Scholar 

  39. Heaton DC, McLoughlin K. Jk(a-b-) red blood cells resist urea lysis. Transfusion 1982;22:70–2.

    Article  PubMed  CAS  Google Scholar 

  40. Telen MJ, Green AM. The Inab phenotype: Characterization of the membrane protein and complement regulatory defect. Blood 1989;47:437–42.

    Google Scholar 

  41. Tate CG, Uchikawa M, Tanner MJA, et al. Studies on the defect which causes absence of decay accelerating factor (DAF) from the peripheral blood cells of an individual with the Inab phenotype. Biochem J 1989;261:489–95.

    PubMed  CAS  Google Scholar 

  42. Hadley TJ, Miller LH, Haynes JD. Recognition of red cells by malaria parasites: The role of erythrocyte-binding proteins. Transf Med Rev 1991;5:108–13.

    Article  CAS  Google Scholar 

  43. Bobolis KA, Lande WM, Telen MJ. Markedly weakened expression of JMH in a kindred with congenital hemolytic anemia. Transfusion 1991;31(suppl):46S.

    Google Scholar 

  44. Parsons SF, Jones J, Anstee DJ, et al. A novel form of congenital dyserythropoietic anemia associated with deficiency of erythroid CD44 and unique blood group phenotype [Inab(a-b-), Co(a-b-)]. Blood 1994;83:860–68.

    PubMed  CAS  Google Scholar 

  45. Tippett P. Regulator genes affecting red cell antigens. Transf Med Rev 1990;4:56–68.

    Article  CAS  Google Scholar 

  46. Tanner MJA, High S, Martin PG, et al. Genetic variants of human red cell membrane sialoglycoprotein β. Study of the alterations occurring in the sialoglycoprotein β gene. Biochem J 1988;250:407–14.

    PubMed  CAS  Google Scholar 

  47. High S, Tanner MJA, Macdonald EB, et al. Rearrangements of the red cell membrane glycophorin C (sialoglycoprotein β) gene. Biochem J 1989;262:47–54.

    PubMed  CAS  Google Scholar 

  48. Chang S, Reid ME, Conboy J, Kan KW. Molecular characterization of erythrocyte glycophorin C variants. Blood 1991;77:644–48.

    PubMed  CAS  Google Scholar 

  49. Fuduka M. Molecular genetics of the glycophorin A gene cluster. Semin Hematol 1993;30:138–51.

    Google Scholar 

  50. Reid ME. Some concepts relating to the molecular genetic basis of certain MNS blood group antigens. Transf med 1994;4:99–111.

    Article  CAS  Google Scholar 

  51. Winardi R, Reid M, Conboy J, Mohandas N. Molecular analysis of glycophorin C deficiency in human erythrocytes. Blood 1993;81:2799–803.

    PubMed  CAS  Google Scholar 

  52. Reid ME, Spring FA. Molecular basis of glycophorin C variants and their associated blood group antigens. Transf Med 1994;4:139–49.

    Article  CAS  Google Scholar 

  53. Cartron J-P, Le van Kim C, Colin Y. Glycophorin C and related glycophorins: Structure, function and regulation. Semin Hematol 1993;30:152–68.

    PubMed  CAS  Google Scholar 

  54. Pinder JC, Chung A, Reid ME, Gratzer WB. Membrane attachment sites for the membrane cytoskeletal protein 4.1 of the red blood cell. Blood 1993;82:3482–88.

    PubMed  CAS  Google Scholar 

  55. Lublin DM, Mallinson G, Poole J, et al. Molecular basis of reduced or absent expression of decay-accelerating factor in Cromer blood group phenotypes. Blood 1994;84: 1276–82.

    PubMed  CAS  Google Scholar 

  56. Merry AH, Rawlinson VI, Uchikawa M, Daha MR, Sim RB. Studies on the sensitivity to complement-mediated lysis of erythrocytes (Inab phenotype) with a deficiency of DAF (decay accelerating factor). Brit J Haematol 1989;73:248–54.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reid, M.E. (1995). Genetic Abnormalities in Blood Group Serology. In: Sibinga, C.T.S., Das, P.C., Briët, E. (eds) Hereditary Diseases and Blood Transfusion. Developments in Hematology and Immunology, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2017-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2017-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5834-3

  • Online ISBN: 978-1-4615-2017-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics