Skip to main content

Role of Topoisomerase II α and β Isozymes in Determining Drug Resistance in vitro and in vivo

  • Chapter
Hereditary Diseases and Blood Transfusion

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 30))

  • 39 Accesses

Abstract

Chemotherapeutic agents which target the nuclear enzyme topoisomerase II (topo II) play a major role in the treatment of acute leukaemias and lymphomas. Treatments commonly include an anthracycline(e.g. doxorubicin) or anthracenedione (e.g. mitoxantrone), and, more recently, regimens have also included amsacrine (m-AMSA) [1] or etoposide [2]. Complete responses occur in 50–57% of patients. However, the underlying biochemical factors which distinguish the cancer cells of responsive from non-responsive patients remain unknown. A common problem limiting the clinical utility of these agents is the emergence of drug resistant tumour cells. Resistance to therapy can either be intrinsic (de novo) or acquired in response to the therapy. Intrinsic resistance is most likely to be conferred by the general defense mechanisms of the body against cytotoxic insults. For example, cells derived from melanomas, hypernephromas and colon carcinomas are highly drug resistant. In contrast some tumour types initially respond to treatment but subsequently recur in a form which is no longer drug responsive. This phenomenon is presumably a reflection of the selection of resistant cell subgroups, that either pre-existed or were induced by therapy [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jehn U, Heniemann V. New drugs in the treatment of acute and chronic leukemia with some emphasis on m-AMSA. Anticancer Res 1991;11:705–11.

    PubMed  CAS  Google Scholar 

  2. Bishop J. Etoposide in the treatment of leukemias. Sem Oncol 1992;19:33–38.

    CAS  Google Scholar 

  3. Carmichael J, Hickson ID. Mechanism of cellular resistance to cytotoxic drugs and x-irradiation. Int J Rad Oncol Biol Phys 1991;20:197–202.

    Article  CAS  Google Scholar 

  4. Endicott J, Ling V. The biochemistry of p-glycoprotein-mediated drug resistance. Ann Rev Biochem 1989;58:137–71.

    Article  PubMed  CAS  Google Scholar 

  5. Pastan I, Gottesman M. Multiple drug resistance in human cancer. N Engl J Med 1987;316:1388–93.

    Article  PubMed  CAS  Google Scholar 

  6. Roninson IB (ed). Molecular and cellular biology of multidrug resistance in tumour cells. Plenum Press, New York 1991:406–14.

    Google Scholar 

  7. Schinkel A, Borst P. Multidrug resistance mediated by P-glycoproteins. Sem Cancer Biol 1991;2:213–26.

    CAS  Google Scholar 

  8. Cole S, Chanda ER, Dickie FP, Gerlach JH, Mirski SEL. Non-P-glycoprotein-mediated multidrug resistance in a small cell lung cancer cell line: Evidence for a decreased susceptibility to drug induced DNA damage and reduced levels of topoisomerase II. Cancer Res 1991;51:3345–52.

    PubMed  CAS  Google Scholar 

  9. Zaman G, Versantvoort CHM, Smit JJM, et al. Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Res 1993;53:1747–50.

    PubMed  CAS  Google Scholar 

  10. Beck W. Unknotting the complexities of multidrug resistance: The involvement of DNA topoisomerases in drug action and resistance. J Natl Cancer Inst 1989;81:1683–85.

    Article  PubMed  CAS  Google Scholar 

  11. Davies SM, Robson CN, Davies SL, Hickson ID. Nuclear topoisomerase II levels correlate with the sensitivity of mammalian cells to intercalating agents and epipodophyllotoxins. J Biol Chem 1988;263:17724–29.

    PubMed  CAS  Google Scholar 

  12. Deffie A, Batra JK, Goldenberg GJ. Direct correlation between DNA topoisomerase II activity and cytotoxicity in Adriamycin-sensitive and resistant P388 leukemia cell lines. Cancer Res 1989;49:58–62.

    PubMed  CAS  Google Scholar 

  13. Wang J. DNA topoisomerases. Ann Rev Biochem 1985;54:665–97.

    Article  PubMed  CAS  Google Scholar 

  14. Watt P, Hickson ID. Structure and function of type II DNA topoisomerases. Biochem J 1994;303:681–95.

    PubMed  CAS  Google Scholar 

  15. Osheroff N, Zechiedrich EL, Gale KC. Catalytic function of DNA topoisomerase II. BioEssays 1991;13:269–75.

    Article  PubMed  CAS  Google Scholar 

  16. Drake FH, Hoffmann GA, Bartus HF, Mattern MR, Crooke ST, Mirabelli CK. Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochem 1989;28:8154–60.

    Article  CAS  Google Scholar 

  17. Tan KB, Dorman TE, Falls KM, et al. Topoisomerase IIα and topoisomerase IIβ genes: Characterization and mapping to human chromosomes 17 and 3 respective. Cancer Res 1992;52:231–34.

    PubMed  CAS  Google Scholar 

  18. Jenkins J, Ayton P, Davies SL, et al. Isolation of cDNA clones encoding the β isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucl Acids Res 1992;20:5587–92.

    Article  PubMed  CAS  Google Scholar 

  19. Woessner RD, Mattern MR, Mirabelli CK, Johnson RK, Drake FH. Proliferation and cell cycle dependence differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ 1991;2: 209–14.

    PubMed  CAS  Google Scholar 

  20. Gasser S, Laemmli UK. The organisation of chromatin loops: Characterization of a scaffold attachment site. EMBO J 1986;5:511–18.

    PubMed  CAS  Google Scholar 

  21. DiNardo S, Voekel K, Sternglanz R. DNA topoisomerase mutant of Saccharomyces cerevisiae: topoisomerase II is required for the segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci USA 1984;81:2616–20.

    Article  PubMed  CAS  Google Scholar 

  22. Holm C, Goto T, Wang JC, Botstein D. DNA topoisomerase II is required at the time of mitosis in yeast. Cell 1985;41:553–63.

    Article  PubMed  CAS  Google Scholar 

  23. D’Arpa P, Beardmore C, Liu LF. Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 1990;50:6921–24.

    Google Scholar 

  24. Ischida R, Miki T, Narita, et al. Inhibition of intracellular topoisomerase II by antitumour bis(2,6-dioxopiperazine) derivatives: Mode of cell growth inhibition distinct from that of cleavable complex-forming type inhibitors. Cancer Res 1991;51:4909–16.

    Google Scholar 

  25. Tanabe K, Ikegami Y, Andoh T. Inhibition of topoisomerase II by antitumour agents bis(2,6-dioxopiperazine) derivatives. Cancer Res 1991;51:4903–08.

    PubMed  CAS  Google Scholar 

  26. Davies S, Jenkins JR, Hickson ID. Human cells express two differentially spliced forms of topoisomerase IIβ mRNA. Nucl Acids Res 1993;21:3719–23.

    Article  PubMed  CAS  Google Scholar 

  27. Takano H, Kohno K, Ono M, Uchida Y, Kuwano M. Increased phosporylation of DNA topoisomerase II in etoposide-resistantmutants of human cancer KB cells. Cancer Res 1991;51:3951–57.

    PubMed  CAS  Google Scholar 

  28. Feldhoff P, Mirski SEL, Cole SPC, Sullivan DM. Altered subcellular distribution of topoisomerase IIα in a drug resistant human small cell lung cancer cell line. Cancer Res 1994;54:756–62.

    PubMed  CAS  Google Scholar 

  29. Webb C, Latham MD, Lock RB, Sullivan DM. Attenuated toposiomerase II content directly correlates with a low level of drug resistance in a Chinese hamster ovary cell line. Cancer Res 1991;51:6543–49.

    PubMed  CAS  Google Scholar 

  30. Carron P, Wang JC. Alignment of primary sequences of DNA topoisomerases. In: Liu LF (ed). Advances in pharmacology. Academic Press, New York 1994;Vol 298:271–97.

    Google Scholar 

  31. Kaufmann S, Karp JE, Jones RJ, et al. Topoisomerase II levels and drug sensitivity in adult acute myelogenous leukemia. Blood 1994;83:517–30.

    PubMed  CAS  Google Scholar 

  32. Fry A, Cresta CM, Davies SM, et al. Relationship between topoisomerase II level and chemosensitivity in human tumour cell lines. Cancer Res 1991;51:6592–95.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davies, S., Sandri, M., Houlbrook, S., Harris, A., Hickson, I. (1995). Role of Topoisomerase II α and β Isozymes in Determining Drug Resistance in vitro and in vivo . In: Sibinga, C.T.S., Das, P.C., Briët, E. (eds) Hereditary Diseases and Blood Transfusion. Developments in Hematology and Immunology, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2017-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2017-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5834-3

  • Online ISBN: 978-1-4615-2017-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics