Skip to main content

Adaptation of the heart to ischemia by preconditioning: Effects on energy equilibrium properties of sarcolemmal ATPases and release of cardioprotective proteins

  • Chapter
Cellular Interactions in Cardiac Pathophysiology

Abstract

Ischemic preconditioning of the heart is referred as a manifest increase in tolerance of the myocardium to otherwise damaging ischemic insult, achieved by one or few consequent initial short exposures to ischemia, each followed by reperfusion of the ischemic area. Several mechanisms such as opening of collateral vessels, the action of catecholamines, inositol phosphates, G-proteins and/or adenosine; inhibition of mitochondrial ATPase, the effects of different endogenous protective substances like heat stress or shock proteins, etc., are believed to cooperate in the mechanism of induction of preconditioning or in maintaining its effect. The present study is an attempt to extend the present knowledge about preconditioning from two aspects: i.) the peculiarities of energy equilibrium in preconditioned myocardium including adaptation of cardiac sarcolemmal ATPases to ischemia and/or hypoxia, and ii) participation of a new endogenous cardioprotective substance in the mechanism of preconditioning. The energy equilibrium in preconditioning is characterized by adaptation of cardiac energy demands to the capacity of energy production and delivery decreased by anaerobiosis and is manifested by constant ratios between ATP, ADP, AMP and the sum ofADN. Principles are proposed that may enable a prediction and mathematical modelling of the balanced energetic state in the preconditioned myocardium. These principles are based on thermodynamics and involve besides others a more economic handling of ATP by sarcolemmal ATPases. The latter enzymes adapt themselves to lowered availability ofATP by decreasing besides their Vmax also their values of Km (increase in the affinity) for ATP and some of them even adjust their activation energy (the anaerobiosis-induced elevation of Ea t is missing). It was also revealed that during preconditioning several up to now not described shock proteins unlike proteins (also glycoproteins) are released from the myocardium into the coronary blood. When these proteins indicated as a HS fraction were isolated, partially purified and in concentrated form applied into the coronary circulation, they were capable to induce in preliminary experiments a cardioprotective effect resembling that of the ischemic preconditioning. (Mol Cell Biochem 147: 129–137, 1995)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia. A delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136, 1986

    Article  PubMed  CAS  Google Scholar 

  2. Reimer KA, Murry CE, Jennings RB: Cardiac adaptation to ischemic preconditioning increases myocardial tolerance to subsequent ischemic episodes. Circulation 82: 2266–2268, 1990

    Article  PubMed  CAS  Google Scholar 

  3. Downey JM: Ischemic preconditioning. Nature’s own cardioprotective intervention. Trends Cardiovasc Med 2: I70–176, 1992

    Article  Google Scholar 

  4. Parratt JR: Vegh A: Pronounced antiarrhythmic effects of ischemic preconditioning. Cardioscience 5: 9–18, 1994

    PubMed  CAS  Google Scholar 

  5. Walker DM, Yellon DM: Ischemic preconditioning: from mechanism to exploatation. Cardiovasc Res 26: 734–739, 1992

    Article  PubMed  CAS  Google Scholar 

  6. Marber MS, Latchman DS, Walker DM, Yellon DM: Cardiac stress protein elevation 24 h after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88: 1264–1272, 1993

    Article  PubMed  CAS  Google Scholar 

  7. Lawson CS: Preconditioning in man: progress and prospects. In: S. Haunso and K. Kjeldsen (eds). International Society for Heart, Research, European Section Meeting, Copenhagen (Denmark), June 8-I1, 1994. Mondzzi Editore, Bologna, 1994, pp 81–85

    Google Scholar 

  8. Ziegelhöffer A, Grunermel J. Dturba A, Procházka F. Kolar F. Vrbjar N, Pelouch V, Ost’ádal B. Szekeres L: Sarcolemmal cation transport systems in rat hearts acclimatized to high altitude hypoxia, influence of 7-oxo prostacyclin, In: B. Oátádal and N.S. Dhalla (eds). Heart Function in Health and Disease. Kluwer Academic Publishers. Norwell, Massachusetts, 1993, pp 219–228

    Chapter  Google Scholar 

  9. Krause EG, Szekeres L: On the mechanism and possible therapeutic application of delayed adaptation of the heart to stress situations. Mol Cell Biochem 1994 in press

    Google Scholar 

  10. Šiška K, Ziegelhöffer A, Fedelešová M, Holec V, Slezák J, Styk J, Pancza D, Gabauer I: Effect of Intra-aortic balloon counterpulsation in experimental myocardial injury following acute coronary occlusion. Biochemical, ultrastructural and physiological aspects. Cardiovasc Res 8: 404–414, 1974

    Google Scholar 

  11. Deutsch E, Berger M, Kussmaul WG, Hirschfield JW, Hermann HC, Laskey WK: Adaptation to ischemia during percutaneous transluminal coronary angioplasty: clinical metabolic and hemodynamic features. Circulation 82: 2044–2051, 1990

    Article  PubMed  CAS  Google Scholar 

  12. Ambrosio G, Tritto I, Chiariello M: Oxygen free radicals and preconditioning. In: S. Haunso and K. Kjeldsen (eds). International Society for Heart Research. European Section Meeting, Copenhagen, Denmark, June 8–11, 1994. Monduzzi Editore, Bologna, 1994, pp 87–91

    Google Scholar 

  13. Liu GS, Thornton J, Van Winkle DM, Stanley AWH, Olsson RA, Downey JM: Protection against infarction afforded by preconditioning is mediated by A, adenosine receptors in rabbit heart. Circulation 84: 350–356, 1991

    Article  PubMed  CAS  Google Scholar 

  14. Mullane K: Myocardial preconditioning. Part of the adenosine revival. Circulation 85: 845–847, 1992

    Article  PubMed  CAS  Google Scholar 

  15. Kitazake M, Hori M, Takashima S, Sato H, Inone M, Kamada T: Ischemic preconditioning increases adenosine release and 5’nucleotidase activity during myocardial ischemia and reperfusion in dogs. Circulation 87: 208–215, 1993

    Article  Google Scholar 

  16. Ravingerová T, Pyne NJ, Parratt JR: Ischaemic preconditioning in the rat heart: the role of G-proteins and adrenergic stimulation. Mol Cell Biochem 1994, in press

    Google Scholar 

  17. Végh A, Szekeres L, Parratt JR: Preconditioning of the ischemic myocardium: involvement of the L-arginine nitric oxide pathway. Br J Pharmacol 107: 648–652, 1992

    Article  PubMed  Google Scholar 

  18. Végh A, Szekeres L, Parratt JR: Protective effects of preconditioning of the ischemic myiocardium involve cyclo-oxygenase products. Cardiovasc Res 24: 1020–1023, 1990

    Article  PubMed  Google Scholar 

  19. Parratt JR: Endogenous myocardial protective substances. Cardiovasc Res 27: 698–702, 1993

    Google Scholar 

  20. Vegh A,Papp JGy,Szekeres L,Parratt JR: Evidence that bradykinin contributes to the pronounced effects of ischemic preconditioning. Br J Pharmacol 1993,in press

    Google Scholar 

  21. Brand T. Sharma HS, Fleischmann KE, Duncker DJ, McFalls EO, Verdow PD, Schaper W: Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Cardiovasc Res 71: 1351–1360, 1992

    CAS  Google Scholar 

  22. Gross GJ, Auchampach JA: Blockade of ATP sensitive potassium channels prevents myocardial preconditioning in dogs. Circulation Res 70: 223–235, 1992

    CAS  Google Scholar 

  23. Mitchell MB, Parker CG, Meng X, Brew EG, Ao L, Brown J. Harken A, Banjeree A: Protein kinase C mediates preconditioning in isolated rat heart. Circulation 884: 1–633, 1993

    Google Scholar 

  24. Fulton RM, Hutchinson EC, Jones AN: Ventricular weight in cardiac hypertrophy. Brit Heart J 14: 413–420, 1952

    Article  PubMed  CAS  Google Scholar 

  25. Ziegelhöffer A, Procházka J, Pelouch V, Ošťádal B, Džurba A, Vrbjar N: Increased affinity to substrate in sarcolemmal ATPases from hearts acclimatized to high altitude hypoxia. Physiol bohemoslov 36: 404–415, 1987

    Google Scholar 

  26. Vrbjar N, Soos J, Ziegelhöffer A: Secondary structure of heart sarcolemmal proteins during interaction with metallic cofactors of (Na,K) ATPase. Gen Physiol Biophys 3: 317–325, 1984

    PubMed  CAS  Google Scholar 

  27. Taussky HH, Shorr EE: A microcolorimetric method for determination of inorganic phosphorus. J Biol Chem 202: 575–585, 1953.

    Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193, 265–275, 1953

    Google Scholar 

  29. Reimer KA, Murry CE, Yamasawa I, Hill. ML, Jennings RB: Four brief episodes of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 251: H1306–H1316,1986

    PubMed  CAS  Google Scholar 

  30. Lange R, Ingwall JS, Hale SL, Alker KJ, Kloner RA: Effects of recurrent ischemia on myocardial high energy phosphate content in canine hearts. Basic Res Cardiol 79: 469–478, 1984

    Article  PubMed  CAS  Google Scholar 

  31. Swain JL, Sabina ML, Hines JJ, Greenfield JC Jr, Holmes EW: Repetitive episodes of brief ischemia (12 min) do not produce a cumulative depletion of high energy phosphate compounds. Cardiovasc Res 18: 264–269, 1984

    Article  PubMed  CAS  Google Scholar 

  32. Hoffemeister HM, Mauser M, Schaper W: Repeated episodes of regional myocardial ischemia: Effect on local function and high energy phosphate levels. Basic Res Cardiol 81: 361–372, 1986

    Article  Google Scholar 

  33. Ziegelhoffer A, deJong JW, Ferrari R. Turi Nagy L: Ischemic preconditioning of the myocardium as a result of adaptation of enzymes catalyzing energy consuming processes to decreased accessibility of metabolic energy. A theoretical study based upon real measurements. 1. J Mol Cell Cardiol 24 (Supplement I): S.150, 1992

    Google Scholar 

  34. Hoffemeister HM, Mauser M, Schaper W: Repeated episodes of regional myocardial ischemia: Effect on local function and high energy phosphate levels. Basic Res Cardiol 81: 361–372, 1986

    Article  Google Scholar 

  35. Vrbjar N, Slezák J, Ziegelhöffer A, Tribulová N: Features of the (Na,K)-ATPase of cardiac sarcolemma with particular reference to myocardial ischemia. Europ Heart J 12 (Supplement F): 149–152, 1991

    Article  CAS  Google Scholar 

  36. Vrbjar N, Džurba A, Ziegelhöffer A: Kinetic and thermodynamic properties of membrane bound Ca-ATPase with low affinity to calcium in cardiac sarcolemma; response to global ischemia of the heart. Life Sci 53: 1875–1973, 1993

    Article  Google Scholar 

  37. Vrbjar N, Diurba A, Ziegelhöffer A: Enzyme kinetics and activation energy of (Na,K)-ATPase in ischemic hearts: Influence of the duration of ischemia. Gen Physiol Biophys 13: 405–411,1994

    PubMed  CAS  Google Scholar 

  38. Dhalla NS, Ziegelhöffer A, Harrow JAC: Regulatory role of membrane sysytems in heart function. Review Canad J Physiol Pharmacol 55: 1211–1234, 1977

    Article  CAS  Google Scholar 

  39. Fedelesová M, Dhalla NS, Balasubramanian V, Ziegelhöffer A: Energy dependent stimulation of membrane bound Mg2+- and K+-Na+- ATPase by glucose. In: P. Hatt (ed). Les Surcharges Cardiaques (Heart Overloading). Colloque INSERM, Paris, 1972, pp 217–221

    Google Scholar 

  40. Reimer AK, Jennings RB: Myocardial ischemia, hypoxia and infarction. In: H.A. Fozard et al. (eds). The Heart and Cardiovascular System, Second Edition. Raven Press Ltd., New York, 1992, pp 1875–1973

    Google Scholar 

  41. Ondrejicková O, Ziegelhöffer A, Gabauer I, Sotníková R, Styk J, Gibala P, Sedlák J, Horáková L: Evaluation of ischemia-reperfusion injury by malondialdehyde, glutathione, and gamma-glutamyl transpeptidase:lack of specific local effects in diverse parts of the heart following acute coronary occlusion. Cardioscience 4: 225–230, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ziegelhöffer, A., Vrbjar, N., Styk, J., Breier, A., Džurba, A., Ravingerová, T. (1995). Adaptation of the heart to ischemia by preconditioning: Effects on energy equilibrium properties of sarcolemmal ATPases and release of cardioprotective proteins. In: Slezák, J., Ziegelhöffer, A. (eds) Cellular Interactions in Cardiac Pathophysiology. Developments in Molecular and Cellular Biochemistry, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2005-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2005-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5828-2

  • Online ISBN: 978-1-4615-2005-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics