Skip to main content

An Introduction to Lie Algebraic Treatment of Optical Aberrations

  • Chapter
Lagrangian Optics

Abstract

We have seen in the previous chapter on optical aberrations how complicated the algebra can get. Recently a number of workers [14] have introduced formalisms using matrix methods to do nonlinear calculations (i.e., departures for Gaussian optics) and hence calculate aberrations up to any arbitrary order. However, the drawback of matrix methods when extended to the non-linear regime is that in general, large matrices are required. For example, if one were to go up to the 5th order, the size of the matrices are of the dimensions of 125 × 125 for any arbitrary conical surface. The size of the matrices can be reduced by the use of symmetries, but the method is still cumbersome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kando and Y. Kateuchi, Matrix method for nonlinear transformations and its application to an optical system. J. Opt. Soc. Am. A, 13, 71, (1996)

    Article  ADS  Google Scholar 

  2. V. Lakshminarayanan and S. Varadharajan, Expressions for aberration coefficients using nonlinear transformations. Optom. Vis. Sci., 74, 676 (1997)

    Article  Google Scholar 

  3. V. Lakshminarayanan and S. Varadharajan, Aberration coefficients of general spherocylindrical surfaces. Optom. Vis. Sci., 77, 156, (2000)

    Article  Google Scholar 

  4. J.B. Almeida, General methods for the determination of matrix coefficients for high order optical system modeling, J. Opt. Soc. Am.A, 16, 596, (1999)

    Article  ADS  Google Scholar 

  5. A.H. Dragt, Lie algebraic theory of geometrical optics and optical aberrations, J. Opt. Soc. Am, 72, 372, (1982)

    Article  MathSciNet  ADS  Google Scholar 

  6. A.J. Dragt, E. Forest, K.B. Wolf, Foundations of a Lie algebraic theory of geometric optics in Lie Methods in Optics, Vol. 250 of lecture notes in physics, ed. J Sanchez-Mondragon and K.B. Wolf, Springer Verlag, Heidelberg, (1986). Pages 105–107. This book contains extensive overview of Lie group theory and applications

    Google Scholar 

  7. A. J. Dragt, Elementary and advanced Lie algebraic methods with application to accelerator design, electron microscopes and light optics. Nucl. Instrum. Meth. Phys. Res. A, 258, 339, (1987)

    Article  ADS  Google Scholar 

  8. V. Guillemin, S. Sternberg, Symplectic techniques in Physics, Cambridge Univ. Press, Cambridge, UK, (1984)

    MATH  Google Scholar 

  9. O. Staroudis, The optics of rays, wavefronts and caustes, Academic Press, NY, (1972)

    Google Scholar 

  10. R.K. Luneberg, Mathematical theory of optics, Univ. of California Press, Berkeley, (1964)

    Google Scholar 

  11. AJ. Dragt and J.M. Finn, Lie series and invariant functions for analytic symplectic maps, J. Math. Phys., 17, 2215, (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. Gerrard and M. Burch, Introduction to matrix methods in optics, Dover, NY, (1994)

    MATH  Google Scholar 

  13. G. Rangarajan and M. Sachidanand, Spherical aberration and its correction using lie algebra techniques, Pramana-Ind. J. Phys., 49, 635, (1997)

    Article  ADS  Google Scholar 

  14. E. Forest, Lie algebraic methods for charged particle beams and light optics, Ph.D. dissertation, Univ. Maryland, College Park, MD. (1984)

    Google Scholar 

  15. V. Lakshminarayanan, R. Sridhar, R. Jagannathan, Lie algebraic treatment of dioptric power and optical aberrations. J. Opt. Soc. Am. A, 15, 2497, (1998)

    Article  MathSciNet  ADS  Google Scholar 

  16. S.A. Khan, and R. Jagannathan, Quantum mechanics of charged-particle beam transport through magnetic lenses, Phys. Rev., E, 51, 2510, (1995)

    Article  ADS  Google Scholar 

  17. P.W. Hawkes, Lie methods in optics: an assessment, in Lie methods in optics II, K.B. Wolf, ed., Vol. 352 of Springer Lecture notes in Physics, Springer-Verlag, Heidelberg, (1989). Pages 1–17.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakshminarayanan, V., Ghatak, A.K., Thyagarajan, K. (2002). An Introduction to Lie Algebraic Treatment of Optical Aberrations. In: Lagrangian Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1711-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1711-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7582-1

  • Online ISBN: 978-1-4615-1711-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics