Skip to main content

Role of Prolactin in Developmental Differentiation of Hypothalamic Dopaminergic Neurons

  • Chapter
Prolactin

Part of the book series: Endocrine Updates ((ENDO,volume 12))

  • 242 Accesses

Abstract

Among the myriad biological actions of prolactin (PRL) that have been described across vertebrate classes (see [1] and other chapters in this volume) is a stimulatory effect in the brain that is part of the principle of endocrine feedback. In neuroendocrine terminology, “short-loop” feedback refers to the effects of anterior pituitary hormones on the hypophysiotropic neurons in the hypothalamus that regulate pituitary secretion. Because the majority of hypophysiotropic hormones are stimulatory (“releasing”), short-loop feedback is classically negative. However, in the case of neurons that produce inhibitory factors, pituitary feedback is positive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bern H, Nicoll CS. The comparative endocrinology of prolactin. Rec Prog Horm Res 1968; 24:681–720.

    PubMed  CAS  Google Scholar 

  2. Ben-Jonathan N. Dopamine: A prolactin-inhibitory hormone. Endocr Rev 1985; 6:564–89.

    Article  PubMed  CAS  Google Scholar 

  3. Fuxe K, Hokfelt T. Further evidence for the existence of tubero-infundibular dopamine neurons. Acta Physiol Scand 1966; 66:245–246.

    Article  PubMed  CAS  Google Scholar 

  4. Bjorklund A, Moore RY, Nobin A, Stenevi U. The organization of tuberohypophysial and reticuloinfundibular catecholamine neurosystems in the rat brain. Brain Res 1973; 51:171–191.

    Article  PubMed  CAS  Google Scholar 

  5. Dahlstrom A, Fuxe K. Evidence of the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 1964; 62, Suppl. 232:1–55.

    Google Scholar 

  6. Arbogast LA, Voogt JL. Hyperprolactinemia increases and hypoprolactinemia decreases tyrosine hydroxylase messenger ribonucleic acid levels in the arcuate nuclei, but not the substantia nigra or zona incerta. Endocrinology 1991; 128:997–1005.

    Article  PubMed  CAS  Google Scholar 

  7. Phelps CJ. Pituitary hormones as neurotrophic signals: anomalous hypophysiotropic neuron differentiation in hypopituitary dwarf mice. Proc Soc Exp Biol Med 1994; 206:6–23.

    PubMed  CAS  Google Scholar 

  8. Phelps CJ, Hurley DL. Pituitary hormones as neurotrophic factors: Update on hypothalamic differentiation in genetic models of altered feedback. Proc Soc Exp Biol Med 1999; 222:39–58.

    Article  PubMed  CAS  Google Scholar 

  9. Phelps CJ, Hurley DL, Hypothalamic hypophysiotropic neuron development is abnormal in animal models of pituitary prolactin or growth hormone absence or excess, In: Pandalai SG, ed. Recent Research Developments in Endocrinology: in press.

    Google Scholar 

  10. Snell GD. Dwarf, a new mendelian recessive character of the house mouse. Proc Natl Acad Sci USA 1929; 15:733–734.

    Article  PubMed  CAS  Google Scholar 

  11. Eicher EM, Beamer WG. New mouse dw allele: Genetic location and effects on lifespan and growth hormone levels. J Hered 1980; 71:187–190.

    PubMed  CAS  Google Scholar 

  12. Schaible R, Gowen JW. A new dwarf mouse. Genetics 1961; 46:896.

    Google Scholar 

  13. Slabaugh MB, Lieberman ME, Rutledge JJ, Gorski J. Growth hormone and prolactin synthesis in normal and homozygous Snell and Ames dwarf mice. Endocrinology 1981; 109:1040–1046.

    Article  PubMed  CAS  Google Scholar 

  14. Bartke A. Histology of the anterior hypophysis, thyroid and gonads of two types of dwarf mice. Anat Rec 1964; 149:225–236.

    Article  PubMed  CAS  Google Scholar 

  15. Roux M, Bartke A, Dumont F, Dubois MP. Immunohistological study of the anterior pituitary gland - pars distalis and pars intermedia - in dwarf mice. Cell Tissue Res 1982; 223:415–420.

    Article  PubMed  CAS  Google Scholar 

  16. Roti E, Christianson D, Harris ARC, Braverman LE, Vagenakis AG. “Short” loop feedback regulation of hypothalamic and brain thyrotropin-releasing hormone content in the rat and dwarf mouse. Endocrinology 1978; 103:1662–1667.

    Article  PubMed  CAS  Google Scholar 

  17. Li S, Crenshaw EB, III, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain genepit-I.Nature 1990; 347:528–533.

    Article  PubMed  CAS  Google Scholar 

  18. Rhodes SJ, Dimattia GE, Rosenfeld MG. Transcriptional mechanisms in anterior pituitary cell differentiation. Curr Opin Genet Dev 1994; 4:709–717.

    Article  PubMed  CAS  Google Scholar 

  19. Theill LE, Karin M. Transcriptional control of GH expression and anterior pituitary development Endocr Rev 1993; 14:670–689.

    Google Scholar 

  20. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG. Pituitary lineage determination by theProphet ofPit-1homeodomain factor defective in Ames dwarfism. Nature 1996; 384:327–333..

    Article  PubMed  CAS  Google Scholar 

  21. Mouse Genome Informatics Resource,http://www.informatics.jax.orgThe Jackson Laboratory: Bar Harbor, Maine.

  22. Behringer RR, Mathews LS, Palmiter RD, Brinster RL. Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev 1988; 2:453–461.

    Article  PubMed  CAS  Google Scholar 

  23. Steger RW, Bartke A, Parkening TA, Collins T, Buonomo F, Tang K, Wagner TE, Yun JS. Effects of heterologous growth hormones on hypothalamic and pituitary function in transgenic mice. Neuroendocrinology 1991; 53:365–372.

    Article  PubMed  CAS  Google Scholar 

  24. Bartke A, Cecim M, Tang K, Steger R, Chandrashekar V, Turyn D. Neuroendocrine and reproductive consequences of overexpression of growth hormone in transgenic mice. Proc Soc Exp Biol Med 1994; 206:345–359.

    PubMed  CAS  Google Scholar 

  25. Phelps CJ, Sladek JR, Jr., Morgan WW, Bartke A. Hypothalamic catecholamine histofluorescence in dwarf mice. Cell Tissue Res 1985; 240:19–25.

    Article  PubMed  CAS  Google Scholar 

  26. Phelps CJ, Carlson SW, Vaccarella MY, Felten SY. Developmental assessment of hypothalamic tuberoinfundibular dopamine in prolactin-deficient dwarf mice. Endocrinology 1993; 132:2715–2722.

    Article  PubMed  CAS  Google Scholar 

  27. Morgan WW, Bartke A, Pfiel K. Deficiency of dopamine in the median eminence of Snell dwarf mice. Endocrinology 1981;109:2069–2075.

    Article  PubMed  CAS  Google Scholar 

  28. Morgan WW, Besch KC. Effect of prolactin replacement on the number of tyrosine hydroxylase neurons in the arcuate nuclei of Ames dwarf and normal mice. Neuroendocrinology 1990; 52:70–74.

    Article  PubMed  CAS  Google Scholar 

  29. Phelps CJ, Carlson SW, Vaccarella MY. Hypothalamic dopaminergic neurons in prolactin-deficient Ames dwarf mice: localization and quantification of deficit by tyrosine hydroxylase immunocytochemistry. J Neuroendocrinol 1994; 6:145–152.

    Article  PubMed  CAS  Google Scholar 

  30. Phelps CJ. Isolated deficiency of tyrosine hydroxylase immunoreactivity in tuberoinfundibular neurons in pituitary prolactin-deficient Snell dwarf mice. Brain Res 1987; 416:354–358.

    Article  PubMed  CAS  Google Scholar 

  31. Phelps CJ, Romero MA, Malcamp C, Joseph SR. TIDA neuron number in developing Snell dwarf mice. Soc Neurosci Abst 1997; 459.11.

    Google Scholar 

  32. Thomas GB, Phelps CJ, Robinson ICAF. Differential regulation in hypothalamic tuberoinfundibular dopamine neurons in two dwarf rat models with contrasting changes in pituitary prolactin. J Neuroendocrinol 1999; 11:229–236.

    Article  PubMed  CAS  Google Scholar 

  33. Phelps CJ, Carlson SW, Hurley DL. Hypothalamic dopaminergic neurons in transgenic dwarf mice: Histofluorescence, immunocytochemical, and in situ hybridization studies. Anat Rec 1991; 231:446–456.

    Article  PubMed  CAS  Google Scholar 

  34. Phelps CJ, Bartke A. Stimulatory effect of human, but not bovine, growth hormone expression on numbers of tuberoinfundibular dopaminergic neurons in transgenic mice. Endocrinology 1997; 138:2849–55.

    Article  PubMed  CAS  Google Scholar 

  35. Slabaugh MB, Lieberman ME, Rutledge JJ, Gorski J. Ontogeny of growth hormone and prolactin gene expression in mice. Endocrinology 1982; 110:1489–1470.

    Article  PubMed  CAS  Google Scholar 

  36. Phelps CJ, Vaccarella MY, Romero MI, Hurley DL. Postnatal reduction in number of hypothalamic tuberoinfundibular dopaminergic neurons in prolactin-deficient dwarf mice. Neuroendocrinology 1994; 59:189–196.

    Article  PubMed  CAS  Google Scholar 

  37. Furness JB, Heath JW, Costa M. Aqueous aldehyde (Faglu) methods for the fluorescence histochemical localization of catecholamines for ultrastructural studies of central nervous tissue. Histochemistry 1978; 57:289–295.

    Article  Google Scholar 

  38. Morgan WW, King TS. Monoamine biosynthesis in hypothalamic regions of dwarf mice: Effect of replacement of deficient anterior pituitary hormones. Neuroendocrinology 1986; 42:351–356.

    Article  PubMed  CAS  Google Scholar 

  39. Palmiter RD, Norstedt G, Gelinas RE, Hammer RE, Brinster RL. Metallothioneinhuman GH fusion genes stimulate growth of mice. Science 1983; 222:809–814.

    Article  PubMed  CAS  Google Scholar 

  40. McGrane MM, deVente J, Yun J, Bloom J, Park E, Wynshaw A, Wagner T, Rottman FM, Hanson RW. Tissue-specific expression and dietary regulation of a chimeric phosphoenolpyruvate carboxykinase/growth hormone gene in transgenic mice. J Biol Chem 1988; 263:11443–11451.

    PubMed  CAS  Google Scholar 

  41. Chandrashekar V, Bartke A, Wagner TE. Neuroendocrine function in adult female transgenic mice expressing the human growth hormone gene. Endocrinology 1992; 130:1802–1808.

    Article  PubMed  CAS  Google Scholar 

  42. Milton S, Cecim M, Li YS, Yun JS, Wagner TE, Bartke A. Transgenic female mice with high human growth hormone levels are fertile and capable of normal lactation without having been pregnant. Endocrinology 1992; 131:536–538.

    Article  PubMed  CAS  Google Scholar 

  43. Belchetz PE, Ridley RM, Baker HF. Studies on the accessibility of prolactin and growth hormone to brain: effect of opiate agonists on hormone levels in serial, simultaneous plasma and cerebrospinal fluid samples in the rhesus monkey. Brain Res 1982; 239:310–314.

    Article  PubMed  CAS  Google Scholar 

  44. Romero MI, Phelps CJ. Identification of growth hormone-releasing hormone and somatostatin neurons projecting to the median eminence in normal and growth hormone-deficient Ames dwarf mice. Neuroendocrinology 1997; 65:107–116.

    Article  PubMed  CAS  Google Scholar 

  45. Flavell DM, Wells T, Wells SE, Carmignac DF, Thomas GB, Robinson ICAF. Dominant dwarfism in transgenic rats by targeting human growth hormone (GH) expression to hypothalamic GH-releasing factor neurons. EMBO J 1996; 15:3871–3879.

    PubMed  CAS  Google Scholar 

  46. Charlton HM, Clark RG, Robinson ICAF, Porter Goff AEP, Cox BS, Bugnon C, Bloch BA. Growth hormone-deficient dwarfism in the rat: a new mutation. J Endocrinol 1988; 119:51–58.

    Article  PubMed  CAS  Google Scholar 

  47. Pellegrini E, Carmignac DF, Bluet-Pajot MT, Mounier F, Bennett P, Epelbaum J, Robinson ICAF. XXX ntrahypothalamic growth hormone feedback: from dwarfism to acromegaly in the rat Endocrinology 1997; 138:4543–4551.

    CAS  Google Scholar 

  48. Phelps CJ, Dalcik H, Endo H, Talamantes F, Hurley DL. Growth hormone-releasing hormone peptide and mRNA are overexpressed in GH-deficient Ames dwarf mice. Endocrinology 1993; 133:3034–3037.

    Article  PubMed  CAS  Google Scholar 

  49. Meister B, Hökfelt T, Vale WW, Sawchenko PE, Swanson L, Goldstein M. XXX Coexistence of tyrosine hydroxylase and growth hormone-releasing factor in a subpopulation of tubero-infundibular neurons of the rat Neuroendocrinology 1986; 42:237–247.

    CAS  Google Scholar 

  50. Sato M, Frohman LA. Differential effects of central and peripheral administration of growth hormone (GH) and insulin-like growth factor on hypothalamic GH-releasing hormone and somatostatin gene expression in GH-deficient dwarf rats. Endocrinology 1993; 133:793–799.

    Article  PubMed  CAS  Google Scholar 

  51. Romero MI, Phelps CJ. Prolactin replacement during development prevents the dopaminergic deficit in hypothalamic arcuate nucleus of prolactin-deficient Ames dwarf mice. Endocrinology 1993; 133:1860–1870.

    Article  PubMed  CAS  Google Scholar 

  52. Romero MI, Phelps CJ. Prolactin replacement in adult dwarf mice does not reverse the deficit in tuberoinfundibular dopaminergic neuron number. Endocrinology 1995; 136:3238–3246.

    Article  PubMed  CAS  Google Scholar 

  53. Dohler KD, Wuttke W. Serum LH, FSH, prolactin and progesterone from birth to puberty in female and male rats. Endocrinology 1974; 94:1003–1008.

    Article  PubMed  CAS  Google Scholar 

  54. Nagata S, Rosenfeld MG, Inoue K. Development of prolactin and growth hormone production in the fetal rat pituitary: An immunochemical study. Dev Growth Diff 1992; 34:473–478.

    Article  CAS  Google Scholar 

  55. Whitworth NS, Grosvenor CE. Transfer of milk prolactin to the plasma of neonatal rats by intestinal absorption. J Endocrinol 1978; 79:191–199.

    Article  PubMed  CAS  Google Scholar 

  56. Shyr SW, Crowley WR, Grosvenor CE. Effect of neonatal prolactin deficiency in prepubertal tuberoinfundibular and tuberohypophyseal dopaminergic neuronal activity. Endocrinology 1986; 119:1227–1231.

    Article  Google Scholar 

  57. Shah GV, Shyr SW, Grosvenor CE, Crowley WR. Hyperprolactinemia after neonatal prolactin (PRL) deficiency in rats: Evidence for altered anterior pituitary regulation of PRL secretion. Endocrinology 1988; 122:1883–1890.

    Article  PubMed  CAS  Google Scholar 

  58. Clarke RE, Hardy RN. The use of125I-polyvinyl pyrrolidine K-60 in the quantitative assessment of the uptake of macromolecular substances by the intestine of young rats. J Physiol 1969; 204:113–125.

    PubMed  CAS  Google Scholar 

  59. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, Kelly PA. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 1997; 11:167–178.

    Article  PubMed  CAS  Google Scholar 

  60. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakahima K, Engle SJ, Smith F, Markoff E, Dorshkind K. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 1997; 16:6926–6935.

    Article  PubMed  CAS  Google Scholar 

  61. Phelps CJ, Horseman ND. Hypophsiotropic dopamine neurons in PRL knockout mice. Proc Endocrine Soc Mtg 1999; P2–492.

    Google Scholar 

  62. Steger RW, Chandrashekar V, Zhao W, Bartke A, Horseman ND. Neuroendocrine and reproductive functions in male mice with targeted disruption of the prolactin gene. Endocrinology 1998; 139:3691–3695.

    Article  PubMed  CAS  Google Scholar 

  63. Lucas BK, Ormandy CJ, Binart N, Bridges RS, Kelly PA. Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 1998; 139:4102–4107.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Phelps, C.J., Hurley, D.L. (2001). Role of Prolactin in Developmental Differentiation of Hypothalamic Dopaminergic Neurons. In: Horseman, N.D. (eds) Prolactin. Endocrine Updates, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1683-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1683-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5676-9

  • Online ISBN: 978-1-4615-1683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics