Skip to main content

Genetic Mutants With Dysregulation of Corticotropin Pathways

  • Chapter
Transgenic Models in Endocrinology

Part of the book series: Endocrine Updates ((ENDO,volume 13))

Abstract

This review emphasizes emerging concepts in regulation of the hypothalamicpituitary-adrenal (HPA) axis. We first discuss relevant physiologic pathways and molecular mechanisms that control the HPA axis. Imbalances at many levels can disrupt HPA axis homeostasis leading to conditions such as Cushing’s syndrome, pituitary hyperplasia, and anxiety disorders. We then describe recently developed animal models with specific alterations in corticotropin pathways. The primary elements of these pathways have been engineered for upregulation, downregulation or deficiency and thus provide a powerful collection of models for studying HPA axis regulation. These models provide new views into features critical for maintaining control of the HPA axis. They have expanded our understanding of the degree of plasticity and compensation that exists within this system. In addition, they reveal novel mechanisms whereby inappropriate or absent regulatory components lead to abnormal endocrine manifestations and behavioral states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and (3-endorphin. Science 1981;213:1394–1397.

    Article  CAS  PubMed  Google Scholar 

  2. Jingami H, Matsukura S, Numa S, Imura H. Effects of adrenalectomy and dexamethasone administration on the level of prepro-corticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin/ßlipotropin precursor mRNA in the pituitary in rats. Endocrinology 1985;117:1314–1320.

    Article  CAS  PubMed  Google Scholar 

  3. Vale W, Vaughan J, Perrin M. Corticotropin-releasing factor (CRF) family of ligands and their receptors. Endocrinologist 1997;7:3S–9S.

    Google Scholar 

  4. Swanson LW, Sawchenko PE, Rivier J, Vale WW. Organization of ovine corticotropinreleasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrino1983;36:165–186.

    Article  CAS  Google Scholar 

  5. Bittencourt JC, Vaughan J, Arias C, Rissman RA, Vale WW, Sawchenko PE. Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J Comp Neurol. 1999;415:285–312.

    Google Scholar 

  6. Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R, Turnbull AV, Lovejoy D, Rivier C, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995;378:287–292.

    Article  CAS  PubMed  Google Scholar 

  7. Stenzel P, Kesterson R, Yeung W, Cone RD, Rittenberg MB, Stenzel-Poore MP. Identification of a novel murine receptor for corticotropin-releasing hormone expressed in the heart. Mol Endocrinol.1995;9:637–645.

    Article  CAS  PubMed  Google Scholar 

  8. Chen R, Lewis KA, Perrin MH, Vale WW. Expression cloning of a human corticotropin-releasing-factor receptor. 1993;90:8967–8971.

    Google Scholar 

  9. Chang C-P, Pearse RV 2d, O’Connell S, Rosenfeld MG. Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron 1993;11:1187–1195.

    Article  CAS  PubMed  Google Scholar 

  10. Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, De Souza EB, Oltersdorf T. Cloning and characterization of a functionally distinct corticotropinreleasing factor receptor subtype from rat brain. Proc Natl Acad Sci USA 1993;92:836–840.

    Google Scholar 

  11. Perrin M, Donaldson C, Chen R, Blount A, Berggren T, Bilezikjian L, Sawchenko P, Vale W. Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci USA 1995;92:2969–2973.

    Google Scholar 

  12. Kostich WA, Chen A, Sperle K, Largent BL. Molecular identification and analysis of a novel human corticotropin-releasing factor (CRF) receptor: the CRH2y receptor. Mol Endocrinol 1998;12:1077–1085.

    Google Scholar 

  13. Behan DP, Linton E A, Lowry P J. Isolation of the human plasma corticotrophin-releasing factor-binding protein. J Endocrinol 1989;22:23–31.

    Article  Google Scholar 

  14. Cortwright DN, Nicoletti A, Seasholtz AF. Molecular and biochemical characterization of the mouse brain corticotropin-releasing hormone-binding protein. Mol. Cell. Endocrinol 1995;111:147–157.

    Google Scholar 

  15. Potter E, Behan DP, Fischer WH, Linton EA, Lowry PJ, Vale WW. Cloning and characterization of the cDNAs for human and rat corticotropin releasing factor-binding proteins. Nature 1991;349:423–426.

    Article  CAS  PubMed  Google Scholar 

  16. Linton EA, Behan DP, Saphier PW, Lowry PJ. Corticotropin-releasing hormone (CRH)binding protein: reduction in the adrenocorticotropin-releasing activity of placental but not hypothalamic CRH. J Clin Endocrinol Metab 1990;70:1574–1580.

    Article  CAS  Google Scholar 

  17. Potter E, Behan DP, Linton EA, Lowry PJ, Sawchenko PE, Vale WW. The central distribution of a corticotropin-releasing factor (CRF)-binding protein predicts multiple sites and modes of interaction with CRF. Proc Natl Acad Sci USA 1992;89:4192–4196.

    Article  CAS  PubMed  Google Scholar 

  18. de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998;19:269–301.

    Article  PubMed  Google Scholar 

  19. Birnberg NC, Lissitzky JC, Hinman M, Herbert E. Glucocorticoids regulate proopiomelanocortin gene expresssion in vivo at the levels of transcription and secretion. Proc Natl Acad Sci USA 1983;80:6982–6986.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou A, Bloomquist B T, Mains R E The prohormone convertases PC 1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. J Biol Chem 1993;268:1763–1769.

    CAS  PubMed  Google Scholar 

  21. Autelitano DJ, Lundblad JR, Blum M, Roberts JL. Hormonal regulation of POMC gene expression. Ann Rev Physiol 1989;51:715–726.

    Article  CAS  Google Scholar 

  22. Behan DP, Khongsaly O, Owens MJ, Chung HD, Nemeroff CB, De Souza EB. Corticotropin-releasing factor (CRF), CRF-binding protein (CRF-BP), and CRF/CRFBP complex in Alzheimer’s disease and control postmortem human brain. J Neurochem 1997;68:2053–2060.

    Article  CAS  PubMed  Google Scholar 

  23. Nelson DH. Cushing’s syndrome, in endocrinology, (Ed: L.J. DeGroot) pp1660–1675 W.B. Saunders Company: Philadelphia: W.B. Saunders, 1989.

    Google Scholar 

  24. Gold P W, Gwirtsman H, Avgerinos PC, Nieman LK, Gallucci WT, Kaye W, Jimerson D, Ebert M, Rittmaster R, Loriaux DL, et al. Abnormal hypothalamic-pituitary-adrenal function in anorexia nervosa. Pathophysiologic mechanisms in underweight and weight-corrected patients. N Engl J Med 1986;314:1335–1342.

    Article  CAS  PubMed  Google Scholar 

  25. Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 1984;226:1342–1344.

    Article  CAS  PubMed  Google Scholar 

  26. Behan DP, Heinrichs SC, Troncoso JC, Liu XJ, Kawas CH, Ling N, De Souza EB. Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer’s disease. Nature 1995;378:284–287.

    Article  Google Scholar 

  27. Heilig M, Sjogren M, Blennow K, Ekman R, Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer’s disease and vascular dementia. Biol Psychiatry 1995;38:210–216.

    Article  CAS  PubMed  Google Scholar 

  28. Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W. Development of Cushing’s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992;130:3378–3386.

    Article  CAS  PubMed  Google Scholar 

  29. Muglia L, Jacobson L, Dikkes P, Majzoub JA. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 1995;373:427–432.

    Google Scholar 

  30. Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, Chen R, Marchuk Y, Hauser C, Bentley CA, Sawchenko PE, Koob GF, Vale W, Lee KF. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998;20:1093–1102.

    CAS  Google Scholar 

  31. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor. Nature Gen 1998;19:162–166.

    Article  CAS  Google Scholar 

  32. Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, Koob GF, Vale WW, Lee KF. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behavior and are hypersensitive to stress. Nature Gen 2000;24:410–414.

    Article  CAS  Google Scholar 

  33. Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH, Murray SE, Hill JK, Pantely GA, Hohimer AR, Hatton DC, Phillips TJ, Finn DA, Low MJ, Rittenberg MB, Stenzel P, Stenzel-Poore MPI. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nature Gen 2000;24:403–409.

    Article  CAS  Google Scholar 

  34. Kishimoto T, Radulovic J, Radulovic M, Lin CR, Schrick C, Hooshmand F, Hermanson O, Rosenfeld MG, Spiess J. Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nature Gen 2000;24:415–419.

    Article  CAS  Google Scholar 

  35. Burrows HL, Nakajima M, Lesh JS, Goosens KA, Samuelson LC, Inui A, Camper SA, Seasholtz AF. Excess corticotropin-releasing hormone-binding protein in the hypothalamic-pituitary-adrenal axis in transgenic mice. J Clin Invest 1998;101:1439–1447.

    Google Scholar 

  36. Lovejoy DA, Aubry JM, Tumbull A, Sutton S, Potter E, Yehling J, Rivier C, Vale WW. Ectopic expression of the CRF-binding protein: minor impact on HPA axis regulation but induction of sexually dimorphic weight gain. J Neuroendocrinol 1998;10:483–491.

    Article  CAS  PubMed  Google Scholar 

  37. Karolyi IJ, Burrows HL, Ramesh TM, Nakajima M, Lesh JS, Seong E, Camper SA, Seasholtz M. Altered anxiety and weight gain in corticotropin-releasing hormone-binding protein-deficient mice. Proc Natl Acad Sci USA 1999;96:11595–11600.

    Article  CAS  PubMed  Google Scholar 

  38. Pepin M, Pothier F, Barden N Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene. Nature 1992;355:725–728.

    Google Scholar 

  39. Reichardt HM, Kaestner KH, Tuckennaun J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, Schutz G. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 1998;93:531–541.

    Article  CAS  PubMed  Google Scholar 

  40. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schutz G. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nature Gen 1999;23:99–103.

    Article  CAS  Google Scholar 

  41. Saiardi A, Bozzi Y, Baik JH, Borrelli E. Antiproliferative róle of dopamine: loss of D2 receptors causes hormonal dysfunction and pituitary hyperplasia. Neuron 1997;19:115–126.

    Google Scholar 

  42. Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR, Allen RG, Hnasko R, Ben-Jonathan N, Grandy DK, Low MJ. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997;19:103–113.

    Article  CAS  PubMed  Google Scholar 

  43. Westphal CH, Muller L, Zhou A, Zhu X, Bonner-Weir S, Schambelan M, Steiner DF, Lindberg I, Leder P 1. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing’s disease. Cell 1999;96:689–700.

    Article  CAS  PubMed  Google Scholar 

  44. Akita S, Malkin J, Melmed S Disrupted murine leukemia inhibitory factor (LE) gene attenuates adrenocorticotropic hormone (ACTH) secretion. Endocrinology 1996;137:3140–3143.

    Article  CAS  PubMed  Google Scholar 

  45. Yano H, Readhead C, Nakashima M, Ren SG, Melmed S. Pituitary-directed leukemia inhibitory factor transgene causes Cushing’s syndrome: neuro-inunune-endocrine modulation of pituitary development. Mol Endocrinol 1998;12:1708–1720.

    Article  CAS  PubMed  Google Scholar 

  46. Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 1994;14:2579–2584.

    CAS  PubMed  Google Scholar 

  47. Stenzel-Poore MP, Duncan JE, Rittenberg MB, Bakke AC, Heimichs SC. CRH overproduction in transgenic mice: behavioral and immune system modulation. Ann NY Acad Sci 1996 780:36–48.

    Article  CAS  PubMed  Google Scholar 

  48. Heinrichs SC, Stenzel-Poore MP, Gold LH, Battenberg E, Blóom FE, Koob GF, Vale WW, Pich EM. Learning impairment in transgenic mice with central overexpression of corticotropin releasing hormone. Neurosci 1996;74:303–311.

    Article  CAS  Google Scholar 

  49. Heimichs SC, Min H, Tamraz S, Cannouche M, Boehme SA, Vale WW. Anti-sexual and anxiogenic behavioral consequences of corticotropin-releasing factor overexpression are centrally mediated. Psychoneuroendocrinol 1997;22:215–224.

    Article  Google Scholar 

  50. Dallman MF, Jones MT Corticosteroid feedback control of ACTH secretion; effects of stress-induced corticosterone secretion on subsequent stress responses in the rat. Endocrinology 1973;92:1367–1375.

    Article  CAS  PubMed  Google Scholar 

  51. Asa SL, Kovacs K, Stefaneanu L, Horvath E, Billestrup N, Gonzalez-Manchon C, Vale W. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 1992;131:2083–2089.

    Article  CAS  PubMed  Google Scholar 

  52. Mayo KE, Hammer RE, Swanson LW, Brinster RL, Rosenfeld MG, Evans RM. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol Endocrinol 1988;2:606–612.

    Article  CAS  PubMed  Google Scholar 

  53. Gertz BJ, Contreras LN, McComb DJ, Kovacs K, Tyrrell JB, Dallman MF. Chronic administration of corticotropin-releasing factor increases pituitary corticotroph number. Endocrinology 1987;120:381–388.

    Article  CAS  PubMed  Google Scholar 

  54. Carey RM, Varma SK, Drake CR Jr, Thorner MO, Kovacs K, Rivier J, Vale W. Ectopic secretion of corticotropin-releasing factor as a cause of Cushing’s syndrome. N Engl J Med 1984;311:13–20.

    Article  CAS  PubMed  Google Scholar 

  55. Schteingart DE, Lloyd RV, Akil H, Chandler WF, Ibarra-Perez G, Rosen SG, Ogletree R. Cushing’s syndrome secondary to ectopic corticotropin-releasing hormoneadrenocorticotropin secretion. J Clin Endocrinol Metab 1986;63:770–775.

    Article  CAS  PubMed  Google Scholar 

  56. Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropinreleasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Rev 1990;15:71–100.

    Article  CAS  PubMed  Google Scholar 

  57. Dhabhar FS, McEwen BS. Stress-induced enhancement of antigen-specific cell-mediated immunity. J Immunol 1996;156:2608–2615.

    CAS  PubMed  Google Scholar 

  58. Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA 1999 ;96:1059–1064.

    Article  CAS  PubMed  Google Scholar 

  59. Muglia LJ, Bae DS, Brown TT, Vogt SK, Alvarez JG, Sunday ME, Majzoub JA. Proliferation and differentiation defects during lung development in corticotropinreleasing hormone-deficient mice. Am J Respir Cell Mol Biol 1999;20:181–188.

    CAS  Google Scholar 

  60. Karalis K, Muglia LJ, Bae D, Hilderbrand H, Majzoub JA. CRH and the immune system. J Neuroimmunol 1997;72:131–136.

    Article  CAS  PubMed  Google Scholar 

  61. Weninger SC, Dunn AJ, Muglia LJ, Dikkes P, Miczek KA, Swiergiel AH, Berridge CW, Majzoub JA Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. Proc Natl Acad Sci USA 1999;96:8283–8288.

    Article  CAS  PubMed  Google Scholar 

  62. Weninger SC, Muglia LJ, Jacobson L, Majzoub JA. CRH-deficient mice have a normal anorectic response to chronic stress. Regul Pep. 1999;84:69–74.

    Article  CAS  Google Scholar 

  63. Swiergiel AH, Dunn AJ. CRF-deficient mice respond like wild-type mice to hypophagic stimuli. Pharmacol Biochem Behav 1999;64:59–64.

    Article  CAS  PubMed  Google Scholar 

  64. Chalmers DT, Lovenberg TW, DeSouza EB. Localization of novel corticotropinreleasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. Neurosci 1995;15:6340–6350.

    CAS  Google Scholar 

  65. Turnbull AV, Smith GW, Lee S, Vale WW, Lee KF, Rivier C. CRF type I receptor-deficient mice exhibit a pronounced pituitary-adrenal response to local inflammation. Endocrinology 1999;140:1013–1017.

    Article  CAS  PubMed  Google Scholar 

  66. McEwen BS. Stress, adaptation and disease: allostasis and allostatic load. Ann N Y York Acad Sci 1998;840:33–44.

    Article  CAS  Google Scholar 

  67. Parkes D, Rivest S, Lee S, Rivier C, Vale W. Corticotropin-releasing factor activates cfos, NGFI-B, and corticotropin-releasing factor gene expression within the paraventricuIar nucleus of the rat hypothalamus. Mol Endocrinol. 1993;7:1357–1367.

    Article  CAS  PubMed  Google Scholar 

  68. Ono N, Bedran de Castro JC, McCann SM. Ultrashort-loop positive feedback of corticotropin (ACTH)-releasing factor to enhance ACTH release in stress. Proc Natl Acad Sci USA 1985;82:3528–3531.

    Article  CAS  PubMed  Google Scholar 

  69. Liebsch G, Landgraf R, Engelmann M, Lorscher P, Holsboer F. Differential behavioral effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J Psychiatr Res 1999;33:153–163.

    Article  CAS  PubMed  Google Scholar 

  70. Spruijt BM, van Hooff J A, Gispen W H Ethology and neurobiology of grooming behavior. Physiol Rev 1992 72:825–852.

    CAS  PubMed  Google Scholar 

  71. Spina M, Merlo-Pich E, Chan RK, Basso AM, Rivier J, Vale W, Koob GF. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 1996;273:1561–1564.

    Google Scholar 

  72. Arase K, York DA, Shimizu H, Shargill N, Bray GA. Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol 1988;255:E255–259.

    CAS  PubMed  Google Scholar 

  73. Woods SC, Seeley RJ, Porte D Jr, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science 1998;280:1378–1383.

    Google Scholar 

  74. Bradbury MJ, et al. Divergent effects of CRF receptors on food intake and weight gain: acute vs. chronic urocortin administration in WT and CRFR1-/- mice. Endocrine Soc. Abstr. 1999;81:224.

    Google Scholar 

  75. Overton JM, Fisher LA. Differentiated hemodynamic responses to central versus peripheral administration of corticotropin-releasing factor in conscious rats. J Auton Nery Syst 1991;35:43–52.

    Article  CAS  Google Scholar 

  76. Parkes DG, Vaughan J, Rivier J, Vale W, May CN. Cardiac inotropic actions of urocortin in conscious sheep. Am J Physiol 1997;272:H2115–2122.

    CAS  PubMed  Google Scholar 

  77. Grunt M, Haug C, Duntas L, Pauschinger P, Maier V, Pfeiffer EF. Dilatory and isotropic effects of corticotropin-releasing factor (CRF) on the isolated heart. Effects on atrial natriuretic peptide (ANP) release. Horm Metab Res 1992;24:56–59.

    CAS  Google Scholar 

  78. Okosi A, Brar BK, Chan M, D’Souza L, Smith E, Stephanou A, Latchman DS, Chowdrey HS, Knight RA. Expression and protective effects of urocortin in cardiac myocytes. Neuropeptides 1998;32:167–171.

    Article  CAS  PubMed  Google Scholar 

  79. Heldwein KA, Redick DL, Rittenberg MB, Claycomb WC, Stenzel-Poore MP. Corticotropin-releasing hormone receptor expression and functional coupling in neonatal cardiac myocytes and AT-1 cells. Endocrinology 1996;137:3631–3639.

    Article  CAS  PubMed  Google Scholar 

  80. Miyakoda G, Yoshida A, Takisawa H, Nakamura T. ß-Adrenergic regulation of contractility and protein phosphorylation in spontaneously beating isolated rat myocardial cells. J Biochem 1987;102:211–224.

    CAS  PubMed  Google Scholar 

  81. Kemp CF, Woods RJ, Lowry PJ. The corticotrophin-releasing factor-binding protein: an act of several parts. Peptides 1998;9:1119–1128.

    Article  Google Scholar 

  82. Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, Schutz G. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffm cell development and severely retards lung maturation. Genes Dev 1995;9:1608–1621.

    Article  CAS  PubMed  Google Scholar 

  83. Kellendonk C, Tronche F, Reichardt HM, Schutz G. Mutagenesis of the glucocorticoid receptor. J Steroid Biochem Mol Biol 1999;69:253–259.

    Article  CAS  PubMed  Google Scholar 

  84. Barden N, Stec IS, Montkowski A, Holsboer F, Reul JM. Endocrine profile and neuroendocrine challenge tests in transgenic mice expressing antisense RNA against the glucocorticoid receptor. Neuroendocrinol 1997;66:212–220.

    Article  CAS  Google Scholar 

  85. Stec I, Barden N, Reul JM, Holsboer F. Dexamethasone nonsuppression in transgenic mice expressing antisense RNA to the glucocorticoid receptor. J Psychiatr Res 1994;28:1–5.

    Article  CAS  PubMed  Google Scholar 

  86. Carroll BJ. The dexamethasone suppression test for melancholia. Br J Psychiatry 1982;140:292–304.

    Article  CAS  PubMed  Google Scholar 

  87. Karanth S, Linthorst AC, Stalla GK, Barden N, Holsboer F, Reul JM. Hypothalamicpituitary-adrenocortical axis changes in a transgenic mouse with impaired glucocorticoid receptor function. Endocrinology 1997;138:3476–3485.

    Article  CAS  PubMed  Google Scholar 

  88. Dijkstra I, Tilders FJ, Aguilera G, Kiss A, Rabadan-Diehl C, Barden N, Karanth S, Holsboer F, Reul JM Reduced activity of hypothalamic corticotropin-releasing hormone neurons in transgenic mice with impaired glucocorticoid receptor function. J Neurosci 1998;18:3909–3918.

    CAS  PubMed  Google Scholar 

  89. Holsboer F, Barden N Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 1996;17:187–205.

    PubMed  Google Scholar 

  90. Saiardi A, Borrelli E Absence of dopaminergic control on melanotrophs leads to Cushing’s-like syndrome in mice. Mol Endocrinol 1998;12:1133–1139.

    CAS  Google Scholar 

  91. Asa SL, Kelly MA, Grandy DK, Low MJ. Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology 1999;140:5348–5355.

    Article  CAS  PubMed  Google Scholar 

  92. Gehlert DR, Bishop JF, Schafer MP, Chronwall BM. Rat intermediate lobe in culture: dopaminergic regulation of POMC biosynthesis and cell proliferation. Peptides 1988;9:161–168.

    Article  PubMed  Google Scholar 

  93. Chronwall BM, Hook GR, Millington WR Dopaminergic regulation of the biosynthetic activity of individual melanotropes in the rat pituitary intermediate lobe: a morphometric analysis by light and electron microscopy and in situ hybridization. Endocrinology 1988;123:1992–2002.

    Article  CAS  PubMed  Google Scholar 

  94. Bosse R, Fumagalli F, Jaber M, Giros B, Gainetdinov RR, Weisel WC, Missale C, Caron MG. Anterior pituitary hypoplasia and dwarfism in mice lacking the dopamine transporter. Neuron 1997;19:127–138.

    Article  CAS  PubMed  Google Scholar 

  95. Zhu X, Lindberg I. 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity. J Cell Biol 1995;129:1641–1650.

    Article  CAS  PubMed  Google Scholar 

  96. Furuta M, Yano H, Zhou A, Rouille Y, Holst JJ, Carroll R, Ravazzola M, Orci L, Furuta H, Steiner DF. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci USA 1997;94:6646–6651.

    Article  CAS  PubMed  Google Scholar 

  97. Seidel B, Dong W, Savaria D, Zheng M, Pintar JE, Day R. Neuroendocrine protein 7B2 is essential for proteolytic conversion and activation of proprotein convertase 2 in vivo. DNA Cell Biol 1998;17:1017–1029.

    Article  CAS  PubMed  Google Scholar 

  98. Stefana B, Ray DW, Melmed S. Leukemia inhibitory factor induces differentiation of pituitary corticotroph function: an immuno-neuroendocrine phenotype switch. Proc Natl Acad Sci USA 1996;93:12502–12506.

    Article  CAS  PubMed  Google Scholar 

  99. Ray DW, Ren S, Melmed S. Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line: role of STAT pathway. J Clin Invest 1996;97:1852–1859.

    Article  CAS  PubMed  Google Scholar 

  100. Bousquet C, Ray DW, Melmed S. A common pro-opiomelanocortin-binding element mediates leukemia inhibitory factor and corticotropin-releasing hormone transcriptional synergy. J Biol Chem 1996;272:10551–10557.

    Google Scholar 

  101. Auernhammer CJ, Chesnokova V, Melmed S. Leukemia inhibitory factor modulates interleukin-1 ß-induced activation of the hypothalamo-pituitary-adrenal axis. Endocrinology 1998;139:2201–2208.

    Article  CAS  PubMed  Google Scholar 

  102. Chesnokova V, Auernhammer CJ, Melmed S Murine leukemia inhibitory factor gene disruption attenuates the hypothalamo-pituitary-adrenal axis stress response. Endocrinology 1998;139:2209–2216.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murray, S.E., Coste, S.C., Lindberg, I., Stenzel-Poore, M.P. (2001). Genetic Mutants With Dysregulation of Corticotropin Pathways. In: Castro, M.G. (eds) Transgenic Models in Endocrinology. Endocrine Updates, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1633-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1633-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5651-6

  • Online ISBN: 978-1-4615-1633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics