Skip to main content

Transgenic Models for Studies of Oxytocin and Vasopressin

  • Chapter
Transgenic Models in Endocrinology

Part of the book series: Endocrine Updates ((ENDO,volume 13))

Abstract

The number of studies of the nervous system using transgenic mice has grown explosively over the past decade, presenting a wide spectrum of approaches. Transgenic mice have been used to model human disease, to understand physiologic roles of genes, and to understand the regulation of genes (1). For example, transgenes composed of a gene’s promoter directing expression of a reporter gene such as beta-galactosidase may be used to follow expression of a gene during development (2), after various mutations are made in the promoter region to look for cell or regulatory specificity (3), and to study various physiological states (4). Regulatory studies may also use reporters (e.g., green fluorescent protein) that allow for real-time measurement of activity, either in vivo or in various tissue preparations, that is precluded by difficulties in assaying the promoter’s natural gene product. Transgenic mice may also be used to perturb a particular system by overexpressing a gene or by reducing the gene’s expression and/or effectiveness through antisense or dominant negative expression (5). Transgenic expression of certain products, such as tumor promoters or fluorescent substances, may allow for the isolation of immortalized and homogeneous cells for further study (6,7). Finally, transgenic mice may be used in the attempt to correct defects in mutant mice, either those found accidentally or those produced through homologous recombination or random mutagenesis (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herrup K. Transgenic and ES cell chimeric mice as tools for the study of the nervous system. Discuss Neurosci 1995;10:41–64.

    Google Scholar 

  2. Kapur RP, Hoyle GW, Mercer EH, Brinster RL, Palmiter RD. Some neuronal cell populations express human dopamine beta-hydroxylase-lacZ transgenes transiently during embryonic development. Neuron 1991; 7:717–727.

    PubMed  CAS  Google Scholar 

  3. Fromont-Racine M, Bucchini D, Madsen O, Desbois P, Linde S, Nielsen JH, Saulnier C, Ripoche MA, Jami J, Pictet R. Effect of 5’-flanking sequence deletions on expression of the human insulin gene in transgenic mice. Mol Endocrinol 1990;4:669–677.

    PubMed  CAS  Google Scholar 

  4. Smeyne RJ, Schilling K, Robertson L, Luk D, Oberdick J, Curran T, Morgan J.I. FoslacZ transgenic mice: mapping sites of gene induction in the central nervous system. Neuron 1992;8:13–23.

    PubMed  CAS  Google Scholar 

  5. Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, Feigenbaum L, Lee E, Aoyama T, Eckhaus, M, Reitman M, Vinson C. Life without white fat: a transgenic mouse. Gen Dev 1998;12:3168–3181.

    CAS  Google Scholar 

  6. Windle JJ, Weiner RI, Mellon PL. Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol 1990;4:597–603.

    PubMed  CAS  Google Scholar 

  7. Radovick S, Wray S, Lee E, Nicols DK, Nakayama Y, Weintraub BD, Westphal H, Cutler GBJ, Wondisford FE. Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice. Proc Natl Acad Sci USA 1991;88:3402–3406.

    PubMed  CAS  Google Scholar 

  8. Mason AJ, Pitts SL, Nikolics K, Szonyi E, Wilcox JN, Seeburg PH, Stewart TA. The hypogonadal mouse: reproductive functions restored by gene therapy. Science 1986;234:1372–1378.

    PubMed  CAS  Google Scholar 

  9. Waller SJ, Murphy D. Expression of rat vasopressin genes in rats. In: Neurohypophysis: Recent Progress of Vasopressin and Oxytocin Research. (Eds. T. Saito, K. Kurokawa, & S. Yoshida). Amsterdam: Elsevier Press, 1995.

    Google Scholar 

  10. Waller S, Fairhall KM, Xu J, Robinson ICAF, Murphy D. Neurohypophyseal and fluid homeostasis in transgenic rats expressing a tagged rat vasopressin prepropeptide in hypothalamic neurons. Endocrinology 1996;137:5068–5077.

    PubMed  CAS  Google Scholar 

  11. Armstrong WE. Hypothalamic supraoptic and paraventricular nuclei. In: The Rat Nervous System, 2nd Ed, pp377–390. New York: Academic Press, 1995

    Google Scholar 

  12. Armstrong WE. Morphological and electrophysiological classification of hypothalamic supraoptic nuclei. Prog Neurobiol 1995;47:291–339.

    PubMed  CAS  Google Scholar 

  13. Hatton GI. Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog Neurobiol 1990;34:437–504.

    PubMed  CAS  Google Scholar 

  14. Hatton GI. Function-related plasticity in hypothalamus. Annu Rev Neurosci 1997;20:375–397.

    PubMed  CAS  Google Scholar 

  15. Gainer H, Wray S. Cellular and molecular biology of oxytocin and vasopressin. In: The physiology of reproduction pp1099–1129. (Eds E Knobil & JD Neill). New York: Raven Press, 1994.

    Google Scholar 

  16. Morris JF, Nordmann JJ, Dyball REJ. Structure-function correlation in mammalian neurosecretion. hit Rev Exp Pathol 1978;18:1–95.

    CAS  Google Scholar 

  17. Swanson LW, Sawchenko PE. Hypothalamic integration of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 1983;6:269–324.

    PubMed  CAS  Google Scholar 

  18. Silverman A, Zimmerman EA. Magnocellular neurosecretory system. Annu Rev Neurosci 1983;6:357–380.

    PubMed  CAS  Google Scholar 

  19. Meister B. Gene expression and chemical diversity in hypothalamic neurosecretory neurons. Mol Neurobiol 1993;7:87–110.

    PubMed  CAS  Google Scholar 

  20. Hatton GI. Oxytocin and vasopressin neurones: vive la difference! J Physiol. 1997;500:284.

    PubMed  CAS  Google Scholar 

  21. Mohr E, Bahnen U, Kiessling C, Richter D. Expression of the vasopressin and oxytocin genes in rats occurs in mutually exclusive sets of hypothalamic neurons. FEBS Lett 1988;242:144–148.

    PubMed  CAS  Google Scholar 

  22. Stern JE, Armstrong WE. Sustained outward rectification of oxytocinergic neurons in the rat supraoptic nucleus: ionic dependence and pharmacology. J Physiol 1997;500:497–508.

    PubMed  CAS  Google Scholar 

  23. Bondy CA, Whitnall MH, Brady LS, Gainer H. Coexisting peptides in hypothalamic neuroendocrine systems: some functional implications. Cell. Molec Neurobiol 1989; 9:427–446.

    CAS  Google Scholar 

  24. Kiyama H, Emson PD. Evidence for the coexpression of oxytocin and vasopressin messenger ribonucleic acids in magnocellular neurosecretory cells: simultaneous demonstration of two neurophysin messenger ribonucleic acids by hybridization histochemistry. J Neuroendocrinol 1990;2:257–259.

    PubMed  CAS  Google Scholar 

  25. Mezey E, Kiss J. Coexpression of vasopressin and oxytocin in hypothalamic supraoptic neurons of lactating rats. Endocrinology 1991;129:1814–1820.

    PubMed  CAS  Google Scholar 

  26. Glasgow E, Kusano K, Chin H, Mezey E, Young WS, III, Gainer H. Single cell RTPCR analysis of rat supraoptic magnocellular neurons: Neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 1999;140:5391–5401.

    PubMed  CAS  Google Scholar 

  27. Gainer H. Cell-specific gene expression in magnocellular oxytocin and vasopressin neurons. Adv Exp Med Biol 1998;449:15–27

    PubMed  CAS  Google Scholar 

  28. Xi D, Kusano K, Gainer H. Quantitative analysis of oxytocin and vasopressin mRNAs in single magnocellular neurons isolated from supraoptic nucleus of rat hypothalamus. Endocrinology 1999;140: 4677–4682.

    PubMed  CAS  Google Scholar 

  29. Young WS III. Expression of the oxytocin and vasopressin genes. J Neuroendocrinol 1992;4:529–540.

    Google Scholar 

  30. Murphy D, Carter DA. Transgenic approaches to modifying cell and tissue function. Curr Opin Cell Biol 1992;4 274–279.

    PubMed  CAS  Google Scholar 

  31. Murphy D, Carter DA. Transgenesis techniques: Principles and protocols. In: Methods in Molecular Biology, Volume 18. New Jersey: Humana Press, 1993.

    Google Scholar 

  32. Burbach JPH, van Shaick HSA, deBree FM, Lopes da Silva S, Adan RAH. Functional domains in the oxytocin gene for regulation of expression and biosynthesis of gene products. In: Oxytocin (Eds: Ivell R, Russell J), pp. 9–21. New York: Plenum Press, 1995.

    Google Scholar 

  33. Waller SJ, Ratty, A, Burbach JPH, Murphy D. Transgenic and transcriptional studies on neurosecretory cell gene expression. Cell Mol Neurobiol 1998;18:149–172.

    PubMed  CAS  Google Scholar 

  34. Mohr, E., Schmitz, E., Richter D. A single rat genomic DNA fragment encodes both the oxytocin and vasopressin genes separated by 11 kilobases and oriented in opposite transcriptional directions. Biochimie 1988;70:649–654.

    PubMed  CAS  Google Scholar 

  35. Hara Y, Battey J, Gainer H. Structure of mouse vasopressin and oxytocin genes. Mol. Brain Res. 1990;8:319–324.

    CAS  Google Scholar 

  36. Ratty A, Jeong S-W, Nagle JW, Chin H, Gainer H, Murphy D, Venkatesh B. A systematic survey of the intergenic region between the murine oxytocin and vasopressin encoding genes. Gene 1996;174:71–78.

    PubMed  CAS  Google Scholar 

  37. Schmitz E, Mohr E, Richter D. Rat vasopressin and oxytocin genes are linked by a long interspersed repeated DNA element (LINE): sequence and transcriptional analysis of LINE. DNA Cell Biol 1991;10:81–91.

    PubMed  CAS  Google Scholar 

  38. Murphy D, Bishop A, Rindi G, Murphy MN, Stamp G, Hanson J, Polak J, Hogan BLM Mice transgenic for a vasopressin-SV40 hybrid oncogene develop tumors of the endocrine pancreas and the anterior pituitary: a possible model for human multiple endocrine neoplasia. Am J Pathol 1987;129:552–566.

    PubMed  CAS  Google Scholar 

  39. Stefaneanu L, Rindi G, Horvath E, Murphy D, Polak JM, Kovacs K. Morphology of adenohypophyseal tumors in mice transgenic for vasopressin-SV40 hybrid oncogene. Endocrinology 1992;130:1780–1788.

    Google Scholar 

  40. Ang H-L, Ungerfroren H, de Bree F, Foo N-C, Carter DA, Burbach JP, Ivell R, Murphy D. Testicular oxytocin gene expression in seminiferous tubules of cattle and transgenic mice. Endocrinology 1991;128:2110–2117.

    PubMed  CAS  Google Scholar 

  41. Russo AF, Crenshaw III EB, Lira SA, Simmons DM, Swanson LW, Rosenfeld MG. Neuronal expression of chimeric genes in transgenic mice. Neuron 1988;1:311–320.

    PubMed  CAS  Google Scholar 

  42. Wilson C, Bellen HJ, Gehring WJ. Position effects on eukaryotic gene expression. Ann Rev Cell Biol 1990;6:679–714.

    PubMed  CAS  Google Scholar 

  43. Palmiter, RD, Sandgren EP, Avrbock MR, Allen DD, Brinster RL. Heterologous introns can enhance expression of transgenes in mice. Proc Natl’,EAcad Sci USA 1991;88:478–482.

    CAS  Google Scholar 

  44. Schoenherr CJ, Anderson DJ. Silencing is golden: negative regulation in the control of neuronal gene transcription. Curr Opin Neurobiol 1995;5:566–571.

    PubMed  CAS  Google Scholar 

  45. Habener JF, Cwikel BJ, Hermann H, Hammer RE, Palmiter RD, Brinster RL. Metallothionin-vasopressin fusion gene expression in transgenic mice. J Biol Chem 1989;264:18844–18852.

    PubMed  CAS  Google Scholar 

  46. Young WS III, Reynolds K, Shepard EA, Gainer H, Castel M. Cell specific expression of the rat oxytocin gene in transgenic mice. J Neuroendocrinol 1990;2:917–925.

    PubMed  CAS  Google Scholar 

  47. Young WS III, Reynolds K, Shepard EA. Tissue-and stimulus-specific expression of the rat oxytocin gene in transgenic mice. Society for Neuroscience Abstracts 1990;16:157.

    Google Scholar 

  48. Belenky M, Castel M, Young WS III, Gainer, Cohen S. Ultrastructural immunolocalization of rat oxytocin-neurophysin in transgenic mice expressing the rat oxytocin gene. Brain Res 1992;583:279–286.

    PubMed  CAS  Google Scholar 

  49. Grant FD, Reventos J, Gordon JW, Kawabata S, Miller M, Majzoub JA. Expression of rat arginine vasopressin gene in transgenic mice. Mol Endocrinol 1993;7:659–667.

    PubMed  CAS  Google Scholar 

  50. Zeng Q, Carter DA, Murphy D. Cell specific expression of a vasopressin transgene in rats. J Neuroendocrinol 1994;6:469–477.

    PubMed  CAS  Google Scholar 

  51. Gainer H, Jeong SW, Witt DM, Chin H. Strategies for cell biological studies in oxytocinergic neurons. Adv Exp Med Biol 1995;395:1–8.

    PubMed  CAS  Google Scholar 

  52. Adan RA, Cox JJ, Beischlag TV, Burbach JP. A composite hormone response element mediates the transactivation receptors. Mol Endocrinol 1993;7:47–57.

    PubMed  CAS  Google Scholar 

  53. Ho M-Y, Carter DA, Ang H-L, Murphy D. Bovine oxytocin transgenes in mice: Hypothalamic expresion, physiological regulation and interactions with the vasopressin gene. J Biol Chem 1995;270:27199–27205.

    PubMed  CAS  Google Scholar 

  54. Ang H-L, Carter DA, Murphy D. Neuron-specific and physiological regulation of bovine vasopressin transgenes in mice. EMBO J 1993;12:2397–2409.

    PubMed  CAS  Google Scholar 

  55. Young WS III, lacangelo A, Luo X-ZJ, King C, Duncan K., Ginns EI. Transgenic expression of green fluorescent protein in mouse oxytocin neurons. J Neuroendocrinology 1999;11:935–939.

    CAS  Google Scholar 

  56. Young WS III, Iacangelo I, Luo, X-ZJ, King C, Duncan K, Ginns EI. Transgenic expression of green fluorescent protein and human oxytocin neurophysin in mouse oxytocin neurons. Society for Neuroscience Abstracts 1999;795.7.

    Google Scholar 

  57. Chalfie M. Green fluorescent protein. Photochem Photobiol 1995; 62:651–656.

    PubMed  CAS  Google Scholar 

  58. Tsien RY. The green fluorescent protein. Ann Rev of Biochem 1998;67:509–544.

    CAS  Google Scholar 

  59. Gainer H, Chin H. Molecular diversity in neurosecretion: reflections on the hypothalamoneurohypophysial system. Cell Mol Neurobiol 1998;18:211–230.

    PubMed  CAS  Google Scholar 

  60. Sabatier N, Richard P, Dayanithi G. L-, N- and T- but neither P- nor Q-type Ca2+ channels control vasopressin-induced Ca2+ influx in magnocellular vasopressin neurones isolated from rat supraoptic nucleus. J Physiol 1997;503:253–268.

    PubMed  CAS  Google Scholar 

  61. Wang G, Dayanithi G, Kim S, Horn D, Nadaschi L, Kristipati R, Ramachandran J, Stuenkel EL, Nordmann JJ, Newcomb R, Lemos JR. Role of Q-type Ca2+ channels in vasopressin secretion from neurohypophysial terminals of the rat. J Physiol 1997;502:351–363.

    PubMed  CAS  Google Scholar 

  62. Neumann I, Russell JA, Landgraf R. Oxytocin and vasopressin release within the supraoptic and paraventricular nuclei of pregnant, parturient, and lactating rats: a microdialysis study. Neurosci 1993;53:65–75.

    CAS  Google Scholar 

  63. Burke NV, Han W, Danqing L, Takimoto K, Watkins SC, Levitan ES. Neuronal peptide release is limited by secretory granule mobility. Neuron 1997;19:1095–1102.

    PubMed  CAS  Google Scholar 

  64. Kaether C, Gerdes H-H. Visualization of protein transport along the secretory pathway using green fluorescent protein. FEBS Lett 1995;369:267–271.

    PubMed  CAS  Google Scholar 

  65. Lang T, Wacker I, Steyer J, Kaether C, Wunderlich L Soldati T, Geddes H-H, Almers W. Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 1997;18:857–863.

    PubMed  CAS  Google Scholar 

  66. House SB, Thomas A, Kusano K, Gainer H. Stationary organotypic cultures of oxytocin and vasopressin magnocellular neurons from rat hypothalamus. J Neuroendocrinol 1998;10:849–861.

    PubMed  CAS  Google Scholar 

  67. Kusano K, House S.B, Gainer H. Effects of osmotic pressure and brain-derived neurotrophic factor on the survival of postnatal hypothalamic oxytocinergic and vasopressinergic neurons in dissociated culture. J Neuroendocrinol 1999;11:145–152.

    PubMed  CAS  Google Scholar 

  68. Michaud JL, Rosenquest T, May NR, Fan C-M. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIMI. Gen Devel 1998;12:3264–3275.

    CAS  Google Scholar 

  69. Nakai S, Kawano H, Yudate T, Nishi M, Kuno J, Nagata A, Jishage K, Hamada H, Fujii H, Kawamura K, Shiba K, Noda T. The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Gen Devel 1995;9:3109–3121.

    CAS  Google Scholar 

  70. Schonemann MD, Ryan AK, McEvilly RJ, O’Connell SM, Arias CA, Kalla KA, Li P, Sawchenko PE, Rosenfeld MG. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Gen Devel 1995;9:3122–3135.

    CAS  Google Scholar 

  71. Bohus B, de Wied D. The vasopressin deficient Brattleboro rats: a natural knockout model used in the search for CNS effects of vasopressin. Prog Brain Res 1998;119:555–573.

    PubMed  CAS  Google Scholar 

  72. Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk M.M. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA 1996;93:11699–11704.

    PubMed  CAS  Google Scholar 

  73. Young WS III, Shepard E, Amico J, Hennighausen L, Wagner K-U, LaMarca ME, McKinney C, Ginns EI. Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. Neuroendocrinol 1996;8:847–853.

    CAS  Google Scholar 

  74. Li M, Liu X, Robinson G, Bar-Peled U, Wagner K-U, Young WS, Hennighausen L, Furth PA. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci USA 1997;94:3425–3430.

    PubMed  CAS  Google Scholar 

  75. Wagner K-U, Young WS III, Liu X, Ginns EI, Li M, Furth PA, Hennighausen L. Oxytocin and milk removal are required for post-partum mammary gland development. Gen Func 1997;1:233–244.

    CAS  Google Scholar 

  76. Insel TR, Winslow JT, Williams JR, Hastings N, Shapiro LE, Carter CS. The role of neurohypophyseal peptides in the central mediation of complex social processes-evidence from comparative studies. Reg Pept 1993;45:127–131.

    CAS  Google Scholar 

  77. Insel TR, Young L, Wang Z. Central oxytocin and reproductive behaviors. Rev Reprod 1997;2:28–37.

    PubMed  CAS  Google Scholar 

  78. Young LJ. Oxytocin and vasopressin receptors and species -typical social behaviors. Horm Behav 1999;36:212–221.

    PubMed  CAS  Google Scholar 

  79. DeVries AC, Young WS III, Nelson RJ. Reduced aggressive behaviour in mice with targeted disruption of the oxytocin gene. Journal of Neuroendocrinol 1997;9:363–368.

    CAS  Google Scholar 

  80. Young LJ, Winslow JT, Wang Z, Gingrich B, Guo Q, Matzuk M.M, Insel TR. Gene targeting approaches to neuroendocrinology: oxytocin, maternal behavior, and affiliation. Horm Behav 1997;31:221–231.

    PubMed  CAS  Google Scholar 

  81. Young WS III, Shepard E, Alnico J, DeVries AC, Nelson RJ, Hennighausen L, Wagner K-U, Zimmer A, LaMarca ME, Ginns EI. Targeted reduction of oxytocin expression provides insights into its physiological roles. Adv Exp Mede Biol 1998;449:231–240.

    CAS  Google Scholar 

  82. Gross GA, Imamura T, Luedke C, Vogt SK, Olson LM, Nelson DM, Sadovsky Y, Muglia LJ. Opposing actions of prostaglandins and oxytocin determine the onset of murine labor. Proc Natl Acad Sci USA 1998;95:11875–11879.

    PubMed  CAS  Google Scholar 

  83. Venkatesh B, Si-Ho S-L, Murphy D, Brenner S. Transgenic rats reveal remarkable functional conservation of regulatory controls between the fish isotocin and rat oxytocin genes. Proc Natl Acad Sci USA 1997;94:12462–12466.

    PubMed  CAS  Google Scholar 

  84. Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S. Characterisation of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 1993;366:265–268.

    PubMed  CAS  Google Scholar 

  85. Murphy D, Si-Hoe S-L, Brenner S, Venkatesh B. Something fishy in the rat brain: molecular genetics of the hypothalamo-neurohypophyseal system. BioEssays 1998;20:741–749.

    PubMed  CAS  Google Scholar 

  86. Karpati G, Lochmuller H, Nalbantoglu J, Durham H. The principles of gene therapy for the nervous system. Trends Neurosci 1996;19:49–54.

    PubMed  CAS  Google Scholar 

  87. Slack RS, Miller FD. Viral vectors for modulating gene expression in neurons. Curr Opin Neurobiol 1996;6:576–583.

    PubMed  CAS  Google Scholar 

  88. Lowenstein PR, Enquist LW (eds). Protocols for Gene transfer in Neuroscience. Chichester: John Wiley & Sons, 1996.

    Google Scholar 

  89. Fink DJ, DeLuca NA, Goins WF, Glorioso JC. Gene transfer to neurons using herpes simplex virus-based vectors. Ann Rev Neuroscience. 1996;19:265–287.

    CAS  Google Scholar 

  90. Federoff IV. Novel Targets for Gene Therapy. Gene Ther 1999;6:1907–1908.

    PubMed  CAS  Google Scholar 

  91. Geddes B J, Harding TC, Hughes DS, Byrnes AP, Lightman SL, Conde G, Uney JB. Persistent transgene expression in the hypothalamus following stereotaxic delivery of a recombinant adenovirus: suppression of the immune response with cyclosporin. Endocrinology 1996;137:5166–5169.

    PubMed  CAS  Google Scholar 

  92. Geddes BJ, Harding TC, Lightman S, Uney JB. Assessing viral gene therapy in neuroendocrine models. Front Neuroendocrinol 1999;20:296–316.

    PubMed  CAS  Google Scholar 

  93. Du BP, Wu DM, Boldt-Houle, Terwilligier EF. Efficient transduction of human neurons with an adeno-associated virus vector. Gene Ther 1996;3:254–261.

    PubMed  CAS  Google Scholar 

  94. Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O’Malley KL, During W. Long term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Gen 1994;8:148–154.

    CAS  Google Scholar 

  95. Federico M. Lentiviruses as gene delivery vectors. Curr Opin in Biotechnol. 1999;10:448–453.

    CAS  Google Scholar 

  96. Geddes BJ, Harding TC, Lightman SL, Uney JB. Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin. Nat Med 1997;3:1402–1404.

    PubMed  CAS  Google Scholar 

  97. Vascquez EC, Johnson RF, Beltz TG, Haskell RE, Davidson BL, Johnson AK. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons. Exp Neurol 1998;154:353–365.

    Google Scholar 

  98. Keir SD, House SB, Li J, Xiao X, Gainer H. Gene transfer into hypothalamic organotypic cultures using an adeno-associated virus vector. Exp Neurol 1999;160:313–316.

    PubMed  CAS  Google Scholar 

  99. Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods: A Companion to Methods in Enzymology 1998;14:381–392.

    PubMed  CAS  Google Scholar 

  100. Young LJ, Waymire KG, Nilsen R, Macgregor GR, Wang Z, Insel TR. The 5’ flanking region of the monogamous prairie vole oxytocin receptor gene directs tissue-specific expression in transgenic mice. Ann New York Acad Sci 1997;807:514–517.

    CAS  Google Scholar 

  101. Young LJ, Nilsen R, Waymire KG, MacGregor GR, Insel TR. Increased affiliative response to vasopressin in mice expressing the Vla receptor from a monogamous vole. Nature 1999;400:766–768.

    PubMed  CAS  Google Scholar 

  102. Suter KJ, Song WJ, Sampson TL, Wuarin JP, Saunders JT, Dudek FE, Moenter SM. Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone neurons: characterization of whole-cell electrophysiological properties and morphology. Endocrinology 2000;141:412–419.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gainer, H., Young, W.S. (2001). Transgenic Models for Studies of Oxytocin and Vasopressin. In: Castro, M.G. (eds) Transgenic Models in Endocrinology. Endocrine Updates, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1633-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1633-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5651-6

  • Online ISBN: 978-1-4615-1633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics