Skip to main content

Abstract

In the last chapter, we described the general concepts of FROG. And we gave examples from the polarization-gate version of FROG. But, because FROG is a spectrally resolved autocorrelation, every nonlinear-optical process that can be used to make an autocorrelator can also be used to make a FROG (see Fig. 6.1). In this chapter, we’ll describe and compare the several most common FROG beam geometries and their traces, so you can choose which geometry to use for your application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richman, B.A., K.W. DeLong, and R. Trebino, Temporal Characterization of the Stanford mid-IR FEL micropulses by ‘FROG’. Nuclear Instruments & Methods in Physics Research, 1995. A 358: p. 268–71.

    Article  ADS  Google Scholar 

  2. Trebino, R. and D.J. Kane, Using Phase Retrieval to Measure the Intensity and Phase of Ultrashort Pulses: Frequency-Resolved Optical Gating. J. Opt. Soc. Amer. A, 1993.10(5): p. 1101–11.

    Article  ADS  Google Scholar 

  3. Kohler, B., et al., Phase and Intensity Characterization of Femtosecond Pulses from a Chirped-Pulse Amplifier by Frequency-Resolved Optical Gating. Optics Letters, 1994. 20(5): p. 483-5.

    Article  MathSciNet  ADS  Google Scholar 

  4. DeLong, K.W., R. Trebino, and D.J. Kane, Comparison of Ultrashort-Pulse Frequency-Resolved-Optical-Gating Traces for Three Common Beam Geometries. J. Opt. Soc. Amer. B, 1994. 11(9): p. 1595–608.

    Article  ADS  Google Scholar 

  5. Kane, DJ. and R. Trebino, Single-Shot Measurement of the Intensity and Phase of an Arbitrary Ultrashort Pulse By Using Frequency-Resolved Optical Gating. Opt. Lett., 1993.18(10): p. 823–5.

    Article  ADS  Google Scholar 

  6. Kane, D.J., et al., Single-Shot Measurement of the Intensity and Phase of Femtosecond UV Laser Pulse Using Frequency-Resolved Optical Gating. Optics Letters, 1994.19(14): p. 1061–3.

    Article  ADS  Google Scholar 

  7. Trebino, R., et al., Measuring Ultrashort Laser Pulses in the Time-Frequency Domain Using Frequency-Resolved Optical Gating. Review of Scientific Instruments, 1997. 68(9): p. 3277–95.

    Article  ADS  Google Scholar 

  8. Taft, G., et al., Ultrashort Optical Waveform Measurements Using Frequency-Resolved Optical Gating. Optics Letters, 1995. 20(7): p. 743–5.

    Article  ADS  Google Scholar 

  9. Taft, G., et al., Measurement of 10-fs Laser Pulses. Selected Topics in Quantum Electronics, 1996. 2, Special Issue on Ultrafast Phenomena(3): p. 575–85.

    Article  Google Scholar 

  10. Clement, T.S., A.J. Taylor, and D.J. Kane, Single-shot measurement of the amplitude and phase of ultrashort laser pulses in the violet. Optics Letters, 1995. 20(1): p. 70–2.

    Article  ADS  Google Scholar 

  11. Kane, D.J. and R. Trebino, Characterization of Arbitrary Femtosecond Pulses Using Frequency Resolved Optical Gating. IEEE Journal of Quantum Electronics, 1993. 29(2): p. 571–9.

    Article  ADS  Google Scholar 

  12. Nibbering, E.T.J., O. Duhr, and G. Korn, Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide. Optics Letters, 1997. 22(17): p. 1335–7.

    Article  ADS  Google Scholar 

  13. Sweetser, J.N., D.N. Fittinghoff, and R. Trebino, Transient-Grating Frequency-Resolved Optical Gating. Optics Letters, 1997. 22(8): p. 519–21.

    Article  ADS  Google Scholar 

  14. Eichler, H.J., U. Klein, and D. Langhans, Coherence Time Measurement of Picosecond Pulses by a Light-Induced-Grating Method. Applied Physics, 1980. 21: p. 215–91.

    Article  ADS  Google Scholar 

  15. Eichler, H.J., P. Gtinter, and D.W. Pohl, Laser-Induced Dynamic Gratings. Springer Series in Optical Sciences. 1986, Berlin: Springer-Verlag.

    Google Scholar 

  16. Phillion, D.W., D.J. Kuizenga, and A.E. Siegman, Subnanosecond Relaxation Time Measurements Using a Transient Induced Grating Method. Appl. Phys. Lett., 1975. 27: p. 85–7.

    Article  ADS  Google Scholar 

  17. Eckbreth, A.C., BOXCARS: Crossed-Beam Phase-matched CARS Generation in Gases. Appl. Phys. Lett., 1978. 32(7): p. 421–3.

    Article  ADS  Google Scholar 

  18. Trebino, R., C.E. Barker, and A.E. Siegman, Tunable-Laser-Induced Gratings for the Measurement of Ultrafast Phenomena. IEEE J. Quant. Electron., 1986. QE-22: p. 1413–30.

    ADS  Google Scholar 

  19. Trebino, R. and A.E. Siegman, Subpicosecond-Relaxation Study of Malachite Green Using a Three-Laser Frequency-Domain Technique. J. Chem. Phys., 1983. 79: p. 3621.

    Article  ADS  Google Scholar 

  20. Rundquist, A., et al., Measurement of Ultrashort Optical Waveforms Using Frequency-Resolved Optical Gating, in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, F. W. Wise and C.P.J. Barty, Editors. 1995, Society of Photo-Optical Instrumentation Engineers: Bellingham. p. 201–6.

    Chapter  Google Scholar 

  21. Ishida, Y., K. Naganuma, and T. Yajima, Self-Phase Modulation in Hybridly Mode-Locked CW Dye Lasers. J. Quantum Electronics, 1985. 21(1): p. 69–77.

    Article  ADS  Google Scholar 

  22. Watanabe, A., et al., Microcomputer-Based Spectrum-Resolved Second Harmonic Generation Correlator for Fast Measurement of Ultrashort Pulses. Rev. Sci. Instrum., 1985. 56(12): p. 2259–62.

    Article  ADS  Google Scholar 

  23. Watanabe, A., et al., Computer-Assisted Spectrum-Resolved SHGAutocorrelatorfor Monitoring Phase Characteristics of Femtosecond Pulses. Optics Communications, 1987. 63(5): p. 320–4.

    Article  ADS  Google Scholar 

  24. DeLong, K.W, et al., Frequency-Resolved Optical Gating With the Use of Second-Harmonic Generation. J. Opt. Soc. Amer. B, 1994.11(11): p. 2206–15.

    Article  ADS  Google Scholar 

  25. Paye, J., et al., Measurement of the Amplitude and Phase of Ultrashort Light Pulses from Spectrally Resolved Autocorrelation. OL, 1993.18(22): p. 1946–8.

    Article  Google Scholar 

  26. Dudley, J.M., et al., Direct Measurement of Pulse Distortion Near the Zero-Dispersion Wavelength in an Optical Fiber Using Frequency-Resolved Optical Gating. Opt. Lett., 1997. 22(7): p. 457–9.

    Article  ADS  Google Scholar 

  27. Zeek, E., Pulse-Shaping for High-Harmonic Generation, in Applied Physics. 2001, University of Michigan: Ann Arbor.

    Google Scholar 

  28. Tsang, T., et al., Frequency-Resolved Optical-Gating Measurements of Ultrashort Pulses Using Surface Third-Harmonic Generation. Optics Letters, 1996. 21(17): p. 1381–3.

    Article  ADS  Google Scholar 

  29. Kwok, A., et al., Frequency-Resolved Optical Gating Using Cascaded Second-Order Nonlinearities. IEEE J. Quant. Electron., 1998. 4(2): p. 271–7.

    Article  Google Scholar 

  30. Danielius, R., A. Dubietis, and A. Piskarskas, Transformation of Pulse Characteristics Via Cascaded Second-Order Effects in an Optical Parametric Amplifier. Opt. Commun., 1997.133: p. 277–81.

    Article  ADS  Google Scholar 

  31. Krumbiigel, M.A., et al., Ultrafast Optical Switching by Use of Fully Phase-Matched Cascaded Second-Order Nonlinearities in a Polarization-Gate Geometry. Opt. Lett., 1997. 22(4): p. 245–7.

    Article  ADS  Google Scholar 

  32. Sweetser, J.N., M.A. Krumbügel, and R. Trebino, Amplified Ultrafast Optical Switching by Cascaded Second-Order Nonlinearities in a Polarization-Gate Geometry. Optics Communications, 1997.142: p. 269–72.

    Article  ADS  Google Scholar 

  33. Fittinghoff, D.N., et al., Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives. Optics Letters, 1998. 23(13): p. 1046–8.

    Article  ADS  Google Scholar 

  34. Fittinghoff, D.N., et al., Frequency-Resolved Optical Gating Measurement of Ultrashort Pulses Passing Through a High Numerical Aperture Objective. IEEE J. Quant. Electron., 1999. 35(4): p. 479–86.

    Article  ADS  Google Scholar 

  35. Weiner, A.M., Effect of Group Velocity Mismatch on the Measurement of Ultrashort Optical Pulses via Second Harmonic Generation. IEEE J. Quant. Electronics, 1983. QE-19(8): p. 1276–83.

    Article  ADS  Google Scholar 

  36. Kempe, M. and W. Rudolph, Femtosecond pulses in the focal region of lenses. Phys. Rev. A, 1993. 48: p. 4721–9.

    Article  ADS  Google Scholar 

  37. Kempe, M. and W. Rudolph, Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses. Opt. Lett., 1993. 18: p. 137–9.

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trebino, R. (2000). FROG Beam Geometries. In: Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1181-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1181-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5432-1

  • Online ISBN: 978-1-4615-1181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics