Skip to main content

Etiology of Pituitary Tumours

  • Chapter
  • First Online:
Pituitary Disease

Part of the book series: Endocrine Updates ((ENDO,volume 18))

  • 155 Accesses

Abstract

Pituitary adenomas account for ≈10% of all clinical presentations with primary intracerebral tumors (1), are found incidentally in 3–27% of autopsies (2,3), and a further 10% of asymptomatic adults harbor pituitary adenomas (4), making pituitary adenomas the most common tumor in the central nervous system. This apparent vulnerability of the pituitary gland to neoplastic change is somewhat at odds with the closely regulated, highly specialized cellular phenotypes, which characterize the anterior pituitary. However, recent advancement in our understanding of the molecular mechanisms involved in pituitary tumorigenesis suggest that the same highly specific hormones, growth factors and cytokines derived from intra-and extra-pituitary sites, but under tight hypothalamic-pituitary control, may contribute to pituicyte transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CBTRUS 1996Annual report: Central brain tumor registry of the United States1997

    Google Scholar 

  2. Burrow GN, Wotrzman G, Rewcastle NB, Holgate RC, Kovacs K. 1981.Microadenomas of the pituitary and abnormal sellar tomograms in an uns-elected autopsy series. New England Journal of Medicine. 304: 156–8.

    PubMed  CAS  Google Scholar 

  3. McComb DJ, Ryan N, Horvath E, Kovacs K. 1994.Subclinical adenomas of the human pituitary. New light on old problems. Arc Pathol Lab Med 107: 488–91.

    Google Scholar 

  4. Hall WA, Luciano MG, Doppman JL, Patronas NJ, Oldfield EH. 1994.Pituitary magnetic resonance imaging in normal human volunteers: occult adenomas in the general population. Ann Intern Med 120: 8 17–20.

    Google Scholar 

  5. Melmed S. 1998.Pituitary function and neoplasia. In: Principles of molecular medicine textbook. Jameson L ed.Totowa: Human Press. 443–9.

    Google Scholar 

  6. Kovacs K, Horvath E. 1986.Tumors of the pituitary gland. In: Atlas of Tumor Pathology, Second Series, Fasicle 21. Hartmann WH, Sobin LH, eds. Washington: Armed forces Institute of Pathology.

    Google Scholar 

  7. Herman V, Fagin J, Gonsky RV, Kovacs K, Melmed S. 1990.Clonal origin of pituitary adenomas. J Clin Endocrinol Metab. 71:1427–33.

    PubMed  CAS  Google Scholar 

  8. Biller BMK, Alexander JM, Zervas NT, Hedley-Whyte ET, Arnold A, Klibanski A.1992Clonal origins of adrenocorticotrophin-secreting pituitary tissue in Cushing ‘s disease. J Clin Endocrinol Metab. 75: 1303–9.

    PubMed  CAS  Google Scholar 

  9. Alexander JM, Biller BMK, Bikkal H, Zervas NT, Arnold A, Klibanski A. 1990Clinically non-functional pituitary tumors are monoclonal in origin. J Clin Invest 86: 336–40.

    PubMed  CAS  Google Scholar 

  10. Clayton RN, Pfeifer M, Atkinson AB, Belchetz P, Wass JA, Kyrodimou E, Vanderpump M, Simpson D, Bicknell J, Farrell WE. 2000Different patterns of allelic loss (loss of heterozygosity) in recurrent pituitary tumors provide evidence of multiple clonal origins. Clin Cancer Res. 6:3973–82.

    PubMed  CAS  Google Scholar 

  11. Horvath E, Kovacs K, Scheithauer BW. 1999Pituitary hyperplasia. Pituitary 1: 169–180.

    PubMed  CAS  Google Scholar 

  12. Stefaneanu L, Kovacs K, Horvath E, Asa SL, Losinski NE, Billestrup N et al. 1989Adenohypophysial changes in mice transgenic for human growth hormone-releasing hormone: A histological, immunocytochemical, and electron microscopic investigation. Endocrinology 125: 2710–18.

    PubMed  CAS  Google Scholar 

  13. Asa SL, Kovacs K, Stefaneanu L, Horvath E, Billestrup N, Gonzales-Manchon C et al. 1990Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone. Proc Soc exp Biol Med 193: 232–5.

    PubMed  CAS  Google Scholar 

  14. Hashimoto K, Koga M, Motomura T, Kaysayama S, Kouhara H, Ohnishi T et al. 1995Identification of alternate spliced messenger ribonucleic acid encoding truncated growth hormone-releasing hormone receptor in human pituitary adenomas. J Clin Endocrinol Metab. 80 2933–9.

    PubMed  CAS  Google Scholar 

  15. Weiner RI, Windle J, Mellon P, Schechter J. 1991Role of FGF in tumorigenesis of the anterior pituitary. J Endocrinol Invest 14 (Suppl. 1):10

    Google Scholar 

  16. Zimmering MB, Katsumato N, Sato Y, Brandi ML, Aurbach GD, Marx SJ. 1993Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type-I: relation to pituitary tumor. Journal of Clinical Endocrinology and Metabolism 76 1182–7.

    Google Scholar 

  17. Asghar SA, Asa SL, Ezzat S. 1997Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab. 82:1160–6.

    Google Scholar 

  18. Schecther I, Wiener R. 1991Changes in basic fibroblast growth factor coincident with estradiol-induced hyperplasia of the anterior pituitaries of F344 and Sprague-Dawley rats. Endocrinology 129:2400–8.

    Google Scholar 

  19. Pei L, Melmed S. 1997Isolation and characterization of a Pituitary Tumor-Transforming Gene (PTTG). Molecular Endocrinology 11: 433–41.

    PubMed  CAS  Google Scholar 

  20. Kakar SS. 1999Molecular cloning, genomic organization, and identification of the promoter for the human pituitary tumor transforming gene (PHG). Gene. 240: 317–24.

    PubMed  CAS  Google Scholar 

  21. Zhang X, Horwitz GA, Prezant TP, Bronstein M, Valentini A, Melmed S. 1999Structure, expression and function of human pituitary transforming gene (PTTG). Molecular Endocrinology 13: 156–66.

    PubMed  CAS  Google Scholar 

  22. Prezant, T.P., Kadioglu, P., Melmed, S.1999An intronless homolog ofhuman proto-oncogene hPTTG is expressed in pituitary tumors: evidence for hPTTG family. Journal of Clinical Endocrinology and Metabolism. 84: 1149–52.

    PubMed  CAS  Google Scholar 

  23. Zou H, McGarry TJ, Bernal T, Kirschner MW. 1999Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesisScience 285: 418–22.

    PubMed  CAS  Google Scholar 

  24. Zur A, Brandeis M. 2001Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J 20:792–80 1.

    Google Scholar 

  25. Yu R, Ren S-G, Horwitz GA, Wang Z, Melmed S. 2000Pituitary Tumor Transforming Gene (PTTG) regulates placental JEG-3 cell division and survival: evidence from live cell imagingMol Endocrinol 14:1137–46.

    PubMed  CAS  Google Scholar 

  26. Pei L. 1999Pituitary Tumor-transforming gene protein associates with ribosomal protein SIO and a novel human homologue of DnaJ in testicular cells. J Biol Chem. 274:3151–8.

    PubMed  CAS  Google Scholar 

  27. Dominguez A, Ramos-Morales F, Romero F, Rios RM, Dreyfuss F, Tor-tolero M, Pintor-Toro JA. 1998hpttg, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 17: 2187–93.

    PubMed  CAS  Google Scholar 

  28. Yu R, Heaney AP, Lu W, Chen J, Melmed S. 2000Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53 independent apoptosis. J Biol Chem. 275:36502–5

    PubMed  CAS  Google Scholar 

  29. Pei L. 2000Activation ofmitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J Biol Chem. 275: 31191–8.

    PubMed  CAS  Google Scholar 

  30. Chien W, Pei L. 2000A novel bindingfactorfacilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J Biol Chem. 275:19422–7.

    PubMed  CAS  Google Scholar 

  31. Wang Z, Melmed S. 2000Pituitary Tumor Transforming Gene (PTTG): Transforming and transactivation activity. J Biol Chem 275:7459–61.

    PubMed  CAS  Google Scholar 

  32. Prezant TPPituitary tumor-derived. Proceedings from The 11thInternational Congress of Endocrinology; 2000 October 29-November; Sydney. P 10.

    Google Scholar 

  33. Ishikawa H, Heaney AP, Yu R, Horwitz GA, Melmed S. 2001Human Pituitary Tumor Transforming Gene (PTTG) induces angiogenesis and correlates with tumor vascularity. J Clin Endocrinol Metab. 86:867–74.

    PubMed  CAS  Google Scholar 

  34. Horwitz GA, Zhang X, Wang Z, Melmed S.Human Pituitary Tumor transforming Gene (PTTG) C-terminus mediates transactivation and blocks cell transformation. Proceedings from The 82ndEndocrine Society; 2000 June 21–24; Toronto. P 175.

    Google Scholar 

  35. Horwitz GA, Heaney AP, Ren S-G, Fernando M, Melmed S.Pituitary Tumor Transforming Gene (PTTG) C-terminus silences prolactin gene transcription. Proceedings from The 11thInternational Congress of Endocrinology; 2000 October 29-November; Sydney. P 88.

    Google Scholar 

  36. Heaney AP, Singson R, McCabe CJ, Nelson V. Nakashima M, Melmed S. 2000Pituitary Tumor Transforming Gene: a novel marker in colorectal tumors. Lancet 355: 716–9.

    PubMed  CAS  Google Scholar 

  37. Chen L, Puri R, Letkowitz EJ, Kakar SS. 2000Identification of the human pituitary tumor transforming gene (hPTTG) family: molecular structure, expression, and chromosomal localization. Gene 248:41–50.

    PubMed  CAS  Google Scholar 

  38. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Bronstein M, Melmed S. 1999Pituitary tumor transforming gene expression in human pituitary adenomas. Journal of Clinical Endocrinology and Metabolism 84: 761–7.

    PubMed  CAS  Google Scholar 

  39. Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S. 1999Early involvement of estrogen-induced pituitary tumor transforming gene (PTTG1) and fibroblast growth factor (bFGF) expression in prolactinoma pathogenesis. Nature Medicine 5:1317–21.

    PubMed  CAS  Google Scholar 

  40. Bourne FIR, Sanders DA, McCormick F. 1991The GTPase superfamily: conserved structure and molecular mechanism. Nature. 349: 117–27.

    Google Scholar 

  41. Vallar L, Spada A, Giannattasio G. 1987 Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature. 330: 566–8.

    PubMed  CAS  Google Scholar 

  42. Spada A, Vallar L, Faglia G. 1993G-proteins and hormonal signalling in human pituitary tumors: genetic mutation and functional alterations. Front Neuroendocrinol. 14: 2 14–32.

    Google Scholar 

  43. Harris PE. 1996Gs protein mutations and the pathogenesis and function of pituitary tumors. Metabolism. 45:120–2.

    PubMed  CAS  Google Scholar 

  44. Florio T, Perrino BA, Stork PJ. 1996Cyclic 3,5-adenosine monophosphate and cyclosporin A inhibit cellular proliferation and serine/threonine protein phosphatase activity in pituitary cellsEndocrinology. 137:4409–18.

    PubMed  CAS  Google Scholar 

  45. Berthrat J, Chanson P, Montmimy M. 1995The cyclic adenosine 3 ’,5 ’- monophosp hate-responsivefactor CREB is constitutively activated in human somatotroph adenomas. Molecular Endocrinology 9 9777–83.

    Google Scholar 

  46. Tada M, Kobayashi H, Moriuchi T. 1999Molecular basis of pituitary oncogenesis. J Neuro-oncol. 45: 83–96.

    CAS  Google Scholar 

  47. Adams EF, Brockmeier S, Friedmann E, Roth M, Buchfelder M, Fahlbusch R. 1993Clinical and biochemical characteristics of acromegalic patients harboring gsp -positive and gsp-negative pituitary tumors. Neurosurgery. 33: 198–203.

    PubMed  CAS  Google Scholar 

  48. Faglia G, Arosio M, Spada A. 1996GS protein mutations and pituitary tumors: functional correlates and possible therapeutic implications. Metabolism 45: 117–9.

    PubMed  CAS  Google Scholar 

  49. Willamson EA, Daniels M, Foster S, Kelly WF, Kendall-Taylor P, Harris PE. 1994Gsa and Gila mutations in clinically nonfunctioning pituitary tumorsClin Endocrinol. 41: 815–20.

    Google Scholar 

  50. Boothroyd CV, Grimmond SM, Cameron DP, Hayward NK. 1995G protein mutations in tumors of the pituitary, parathyroid and endocrine pancreas. Biochem Biophys Res Comm. 211: 1063–70.

    PubMed  CAS  Google Scholar 

  51. Berthrat J, Chanson P, Montmimy M. 1995The cyclic adenosine 3 ’,5 ’- monophosphate-responsive factor CREB is constitutively activated in human somatotroph adenomas. Molecular Endocrinology. 9: 777–83.

    Google Scholar 

  52. Coleman DT, Chen X, Sassaroli M, Bancroft C. 1996Pituitary adenylate cyclase-activating polypeptide regulates prolactin promoter activity via a protein kinase A-mediated pathway that is independent of the transcriptional pathway employed by thyrotrophin-releasing hormone. Endocrinology. 137: 1276–85.

    PubMed  CAS  Google Scholar 

  53. Kim DS, Yoon JH, Ahn SK, Kim KE, Seong RH, Hong SH, Kim K, Ryu K, Park SD. 1995A 33kDa Pit-1-like protein binds to the distal region of the human thyrotrophin alpha-subunit gene. Mol Endocrinol. 14:313–22.

    CAS  Google Scholar 

  54. Kraus I, Hollt V. 1995Identification of a cAMP-response element on the human propiomelanocortin gene upstream promoter. DNA Cell Biol. 14:10310.

    Google Scholar 

  55. Cook SJ, McCormick F. 1993Inhibition of cAMP of Ras-independent activation of Raf. Science 262:1069–1072.

    PubMed  CAS  Google Scholar 

  56. Wu J, Dent P, Jelinek T, Wolfinan A, Weber MJ, Sturgill TW. 1993Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3 ’,5 ’- monophosphate. Science. 262:1065–9.

    PubMed  CAS  Google Scholar 

  57. Dekker LV, Parker PJ. 1994Protein kinase C- a question of specificity. Trends Biol sci. 19:73–7.

    CAS  Google Scholar 

  58. Levin DE, Fields FO, Kunisawa R, Bishop JM, Thorner J. 1990A candidate protein kinase C gene, PKC1, is required for the S. Cervisiae cell cycle. Cell. 62: 213–24.

    CAS  Google Scholar 

  59. Gordeladze JO, Sletholt K, Thorn NA, Gautvik KM. 1988Hormone-sensitive adenylate cyclase of prolactin producing rat pituitary adenoma (GH4C1) cells: molecular organization. Eur J Biochem. 177: 665–72.

    PubMed  CAS  Google Scholar 

  60. Alvaro V, Prevostel C, Joubert D, Slosberg E, Weinstein BL 1997Ectopic expression ofa mutant form ofPKCalpha originally found in human tumors: aberrant subcellular translocation and effects on growth control. Oncogene. 14: 677–85.

    PubMed  CAS  Google Scholar 

  61. Couldwell WT, Law RE, Hinton DR, Gopalakrishna R, Yong VW, Weiss MH. 1996Protein kinase C and growth regulation of pituitary adenomas. Acta Neurochir. 65 (suppl): 22–6.

    Google Scholar 

  62. Schiemann U, Assert R, Moskpp D, Gellner R, Hengst K, Gullota F, Domschke W, Pfeiffer A. 1997Analysis of a protein kinase C-alpha mutation in human pituitary tumors. J Endocrinol. 153: 131–7.

    PubMed  CAS  Google Scholar 

  63. Lochrie MA, Hurley JB, Simon ML. 1985Sequence of the alpha subunit of photoreceptor G protein: homologies between transducin, ras, and elongation factors. Science. 228: 96–9.

    PubMed  CAS  Google Scholar 

  64. Egan SE, Weinberg RA. 1996The pathway to signal achievement. Nature. 365; 781–3.

    Google Scholar 

  65. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. 1993Increasing complexity of Ras signaling. Oncogene 17:1395–1413.

    Google Scholar 

  66. Pei L, Melmed S, Scheithauer B, Kovacs K, Prager D. 1994H-ras mutations in human pituitary carcinoma metastasis. Journal of Clinical Endocrinology and Metabolism 78: 842–6.

    PubMed  CAS  Google Scholar 

  67. Cal WY, Alexander JM, Hedley-Whyte ET, Scheithauer BW, Jameson JL, Zervas NT, Klibanski A. 1994Ras mutations in human prolactinomas and carcinomas. Journal of Clinical Endocrinology and Metabolism. 78: 89–93.

    Google Scholar 

  68. Karga HJ, Alexander JM, Hedley-Whyte ET, Klibansky A, Jamesom LJ. 1992ras mutations in human pituitary tumors. Journal of Clinical Endocrinology and Metabolism. 74: 914–9.

    PubMed  CAS  Google Scholar 

  69. Hibberts NA, Simpson DJ, Bicknell JE, Broome JC, Hoban PR, Clayton RN, Farrell WE. 1999Analysis of Cyclin Dl (CCND1) allelic imbalance and overexpression in sporadic pituitary tumors. Clin Cancer Res. 5: 2133–9.

    PubMed  CAS  Google Scholar 

  70. Weinberg RA. 1991Tumor suppressor genes. Science. 254:1138–46.

    PubMed  CAS  Google Scholar 

  71. Kudson AG. 1971Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–3.

    Google Scholar 

  72. Reed AL, Califano J, Cairns P, Westra WH, Jones RM, Koch W, Ahrendt S, Eby Y, Sewell D, Nawroz H, Bartek J, Sidransky D. 1996High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res 56: 3630–3.

    PubMed  CAS  Google Scholar 

  73. Farrell WE, Simpson D, Frost SI, Clayton RN. 1999Methylation mechanisms in pituitary tumorigenesis. Endocrine Rel Cancer. 6:437–47.

    CAS  Google Scholar 

  74. Jacks T, Fazeli A, Schmidt EM, Bronson RT, Goodell MA, Weinberg RA. 1992Effects of an RB mutation in the mouse. Nature. 359: 295–300.

    PubMed  CAS  Google Scholar 

  75. Cryns VL, Alexander JM, Klibanski A, Arnold A. 1993The retinoblastoma gene in human pituitary tumors. J Clin Endocrinol Metab. 77:644–6.

    PubMed  CAS  Google Scholar 

  76. Zhu I, Leon SP, Beggs AH, Busque L, Gilliard DO, Black PM. 1994Human pituitary adenomas show no loss ofheterozygosity at the retinoblastoma gene locus. J Clin Endocrinol Metab. 78: 922–7.

    PubMed  CAS  Google Scholar 

  77. Woloschak M, Roberts JL, Post KD. 1994Loss of heterozygosity at the retinoblastoma locus in human pituitary tumors. Cancer. 74:693–6.

    PubMed  CAS  Google Scholar 

  78. Pei L, Melmed S, Scheithauer BW, Kovacs K, Benedict WF, Prager D. 1995Frequent loss ofheterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: Evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Research 55:1613–6.

    PubMed  CAS  Google Scholar 

  79. Woloschak M, Vu A, Xiao J, Post KD. 1996Abundance and state of pbosphorylation of the Rb gene in human pituitary tumors. In J Cancer. 67:16–9.

    CAS  Google Scholar 

  80. Bates AS, Farrell WE, Bicknell EJ, Talbot AJ, Broome JC, Perrett CW, Thakker RV, Clayton RN. 1997Allelic deletion in pituitary adenomas ref-elects aggressive biological activity and has potential value as a prognostic marker. J Clin Endocrinol Metab. 82: 818–24.

    PubMed  CAS  Google Scholar 

  81. Simpson DJ, Magnay J, Bicknell JE, Barkan AL, McNicholl AM, Clayton RN, Farrell WE. 2000Chromosome 1 3q deletion mapping in pituitary tumors: infrequent loss of the retinoblastoma susceptibility gene (RB 1) locus despite loss ofRB1 protein product in somatotrophinomas. Cancer Research 59:1562–6.

    Google Scholar 

  82. Weinberg RA. 1995 The retinoblastoma protein and cell cycle control. Cell 81:323–30.

    PubMed  CAS  Google Scholar 

  83. Woloschak M, Vu A, Xiao J, Post ND. 1992Abundance and state ofphosphorylation of the retinoblastoma gene product in human pituitary tumors. International Journal of Cancer. 67:16–9.

    Google Scholar 

  84. Farrell WE, Simpson D, Bates AS, Talbot JA, Bicknell J, Clayton RN. 1997Chromosome 9p deletions in invasive and non invasive non-functional pituitary adenomas: The deleted region involves markers outside of the MTS1 and MTS2 gene. Cancer Res 57:2703–9.

    PubMed  CAS  Google Scholar 

  85. Woloschak M, Vu A, Xiao J, Post KD. 1996Frequent loss of the p 1 61 NK4a gene product in human pituitary tumors. Cancer Res. 56:2493–6.

    PubMed  CAS  Google Scholar 

  86. Simpson DJ, Magnay I, Bicknell JE, McNichol AM, Clayton RN, Farrell WE. 1999Hypomethylation of the p16/CDKN2A/MTSI gene and loss of protein expression is associated with non-functional pituitary adenomas but not somatotrophinomas. Genes, Chromsomes and Cancer 24: 328–36.

    CAS  Google Scholar 

  87. Serrano M, Lee HW, Chin C, Cordon-Cardos C, Beach D, DePinho RA. 1996Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37.

    PubMed  CAS  Google Scholar 

  88. Qian X, Jin L, Grande JP, Lloyd RV. 1997Transforming growth factor-/3 and p27 expression in pituitary cells. Endocrinology 137:3051–60.

    Google Scholar 

  89. Jin L, Quian X, Kulig E, Sanno N, Scheithauer BW, Kovacs K, Voung WF, Lloyd RV. 1997Transforming growth factor-/3, transforming growth factor-,3 receptor II, and p27 KIP I expression in nontumorous and neoplastic human pituitaries. Am J Pathol 151: 509–19.

    PubMed  CAS  Google Scholar 

  90. Lidhar K, Korbonits M, Jordan S, Khalimova Z, Kaltsas G, Lu X, Clayton RN, Jenkins PJ, Monson JP, Besser GM, Lowe DG, Grossman AB. 1999Low expression of the cell cycle inhibitor p27KIP1 in normal corticotroph cells, corticotroph tumors and malignant pituitary tumors.Journal of Clinical Endocrinology and Metabolism. 84: 38 13–20.

    Google Scholar 

  91. Baird, A. et al. 1985A nonmitogenic pituitary fimction of fibroblast growth factor: regulation of thyrotrophin and prolactin secretion. Proc. Natl. Acad. Sci. USA. 82: 5545–9.

    PubMed  CAS  Google Scholar 

  92. Smallwood, P. et al. 1996Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development.Proc. Natl. Acad. Sci. U.S.A. 93:9850–7.

    PubMed  CAS  Google Scholar 

  93. Li, Y. et al. 1992Identification and characterization of high molecular weight forms of basic fibroblast growth factor in human pituitary adenomas. J. Clin. Endocrinol. Metab 75: 1436–41.

    PubMed  CAS  Google Scholar 

  94. Atkin SJ, Landholt AM, Jeffreys RV, Diver M. 1993Basic fibroblast growth factor stimulates prolactin secretion from human anterior pituitary adenomas without affecting adenoma cell proliferation. J Clin Endocrinol Metab 77:831–7.

    PubMed  CAS  Google Scholar 

  95. Larson Gil, Koos RD, Sortino MA, Wise PM. 1990Acute effects of basic fibroblast growth factor on secretion of prolactin as assessed by the reverse hemolytic plaque assay. Endocrinology. 126: 927–32.

    Google Scholar 

  96. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P. 1998Fibroblast growth factor-2 (FGF-2) induces vascular endothelial factor (VEGF) expression in the endothelial cells offorming capillaries: an autocrine mechanism contributing to angiogenesis. I Cell Biol 141:1659–73.

    CAS  Google Scholar 

  97. Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V, Le Bourhis K 2000FGF signals for cell proliferation and migration through different pathways. Cytokine & Growth Factors Rev. 11; 295–302.

    CAS  Google Scholar 

  98. Sakamoto H, Mon M, Taira M, Yoshida T, Matsukawa S, Shimiz K, Sekiguchi M, Terada M, Sugimuna T. 1986Transforming gene from human stomach cancers and non-cancerous portion of stomach mucosa. Proc Nat Acad Sci USA. 83 3997–4001.

    PubMed  CAS  Google Scholar 

  99. Shimon I, Huttner A, Said J, Spirina OM, Melmed S. 1996Heparin-binding secretory transforming gene (hst) facilitates rat lactotrope cell tumorigenesis and induces prolactin gene transcription. Journal of Clinical Investigation. 97 187–95.

    PubMed  CAS  Google Scholar 

  100. Shimon I, Hinton DR, Weiss MH, Melmed S. 1998Prolactinomas express human heparin-binding secretory transforming gene product: Marker of tumor invasiveness. Clinical Endocrinology. 48: 23–9.

    PubMed  CAS  Google Scholar 

  101. Gonsky R, Herman V, Melmed S, Fagin I. 1991Transforming DNA sequences present in human prolactin secreting pituitary adenomas. Mol Endocninol. 5:1687–95.

    CAS  Google Scholar 

  102. Ferrara N, Davis-Smyth T. 1997The biology ofvascular endothelial growth factor. Endocrine Reviews. 18: 4–25.

    PubMed  CAS  Google Scholar 

  103. Banerjee SK, Sarkar DK, Weston AP, De A, Campbell DR. 1997Over-expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis. Carcinogenesis. 18:1155–61.

    PubMed  CAS  Google Scholar 

  104. Turner HE, Nagy Z, Gatter KC, Esini MM, Harris AL, Wass JAH. 2000Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab. 85:1159–62.

    PubMed  CAS  Google Scholar 

  105. Renner U, Gloddek J, Pereda MP, Pagotto U, Stalla GK.Regulation of vascular endothelial growth factor secretion in pituitary folliculostellate cells: implication in normal adenomatous pituitary angiogenesis. Eur Cong Endocrinol, 1999; OR3–1.

    Google Scholar 

  106. Turner HE, Nagy ZS, Esiri MM, Harris AL, Wass JARPituitary tumor angiogenesis. Proceedings from The 11thInternational Congress of Endocrinology; 2000 October 29-November; Sydney. 54–18.

    Google Scholar 

  107. Abbass SAA, Asa SL, Ezzat S. 1997Altered expression offibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab. 82: 1160–6.

    PubMed  CAS  Google Scholar 

  108. Alexander JM, Bikkal HA, Zervas NT, Laws Jr ER, Klibanski A. 1996Tumor specific expression and alternate splicing of mRNA ‘s encoding activin/transforming growth factor-0 receptors in human pituitary adenomas. J Clin Endocrinol Metab. 81:783–90.

    PubMed  CAS  Google Scholar 

  109. Alexander JM, Sweaningen B, Tindall GT, Klibanski A. 1995Human pituitary adenomas express endogenous inhibin subunit and follistatin messenger ribonucleic acids. J Clin Endocrinol Metab 80:147–52.

    PubMed  CAS  Google Scholar 

  110. Delidow BC, Billis Win, Agarwal P, White BA. 1991Inhibition of prolactin gene transcription by transforming growth factor 0 in GH3 cells. Mol Endocrinol. 5:1716–22.

    PubMed  CAS  Google Scholar 

  111. Shida N, Ikeda H, Yashimoto T, Oshima M, Takato M, Miyoshi I. 1998Estrogen-induced tumorigenesis in the pituitary gland ofTGF-/3 (+/-) knockout mice. Biochim Biophys Acta. 1407: 79–83.

    PubMed  CAS  Google Scholar 

  112. D’Abronzo FH, Swearingen B, Klibanski A, Alexander JM. 1999Mutational analysis of the activin/transforming growth Factor-f3, transforming growth factor-0 receptor II in human pituitary tumors. J Clin Endocrinol Metab. 84:1716–21.

    PubMed  Google Scholar 

  113. Chabot IG, Walker P, Pelletier G. 1986Distribution of epidermal growth factor binding sites in the adult rat anterior pituitary gland. Peptides. 7:4550.

    Google Scholar 

  114. Gonzalez AM, Logan A, Ying W, Lappi DA, Berry M, Baird A. 1994Fibroblast growth factor in the hypothalamic pituitary axis: differential expression offibroblast growth factor-2 and a high affinity receptor. Endocrinology. 134: 2289–97.

    PubMed  CAS  Google Scholar 

  115. Driman DK, Kobrin MS, Kudlow JE, Asa SL. 1992Transforming growth factor-alpha in normal and neoplastic human endocrine tissue. Human Pathol. 23:1360–5.

    CAS  Google Scholar 

  116. Borgundvaag B, Kudlow JE, Mueller SC, George SR. 1992Dopamine receptor activation inhibits estrogen stimulated transforming growth factor-ca gene expression and growth in the anterior pituitary but not in uterus. Endocrinology. 130: 3453–8.

    PubMed  CAS  Google Scholar 

  117. McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE. 1995Targeting of transforming growth factor-a expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology. 136: 4479–88.

    PubMed  CAS  Google Scholar 

  118. Saeki T, Cristiano A, Lynch MJ, Braitain M, Kim N, Normanno N, Kenny N, Ciardiello F, Salomon DS. 1991Regulation by estrogen through the 5’-flanking region of the transforming growth factor-a gene. Mol Endocrinol 5:1955–63.

    PubMed  CAS  Google Scholar 

  119. Folkman J. 1992The role of angiogenesis in tumor growth. Seminars in Cancer Biology. 3 65–71.

    PubMed  CAS  Google Scholar 

  120. Powell DF, Baker HL, Laws ER. 1974The primary angiographic findings in pituitary adenomas. Radiology. 110: 589–95.

    PubMed  CAS  Google Scholar 

  121. Schechter J, Goldsmith P, Wislon C, Weiner R. 1988Morphological evidence for the presence of arteries in human prolactinomas. Journal of Clinical Endocrinology and Metabolism. 67: 713–9.

    PubMed  CAS  Google Scholar 

  122. Gorczyca W, Hardy J. 1988Microadenomas of the human pituitary and their vascularization. Neurosurg. 22:1–6.

    CAS  Google Scholar 

  123. Weiner R, Elias KA, Monet F. 1985The role of vascular changes in the etiology of prolactin secreting anterior pituitary tumors. In: Prolactin. Basic and clinical correlates. MacLeod RM, Thorner MO, Scapagnini U, eds. Padova: Livinia Press 641–53.

    Google Scholar 

  124. Sano T, Asa SI, Kovacs K. 1988Growth hormone-releasing hormone producing tumors: clinical, biochemical and morphological manifestations. Endocr Rev. 9: 357–73.

    PubMed  CAS  Google Scholar 

  125. Mayo KE, Hammer RE, Swanson LW, Brinster RL, Rosenfeld MG, Enas RM. 1988Dramatic pituitary hyperplasia in transgenic mice overexpressing a human growth hormone-releasing factor gene. Mol Endocrinol 2: 606–12.

    PubMed  CAS  Google Scholar 

  126. Asa SL, Bilbao JM, Kovacs K, Linfoot JA. 1980Hypothalamic neuronal hamartoma associated with pituitary growth cell adenoma and acromegaly. Acta Neuropathol. 53: 231–4.

    Google Scholar 

  127. Billestrup N, Swanson LW, Wale W. 1986Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci USA. 83:6854–7.

    PubMed  CAS  Google Scholar 

  128. Greenman Y, Melmed S. 1994Expression of three somatostatin receptor subtypes in pituitary adenomas: evidence for preferential SSRT5 expression in the mammosomatotroph lineage. Journal of Clinical Endocrinology and Metabolism 79: 724–9.

    PubMed  CAS  Google Scholar 

  129. Levy L, Bourdais J, Mouhieddine OE, et al. 1993Presence and characterization of the somatostatin precursor in normal pituitaries and in growth-hormone secreting adenomas. Journal of Clinical Endocrinology and Metabolism. 76: 85–90.

    PubMed  CAS  Google Scholar 

  130. Spada A, Ballare E, Cobetta S, Lania A, Persani L.Mechansims of resistance to somatostatin in GH-secreting adenomas. Proceedings from The 11thInternational Congress of Endocrinology; 2000 October 29-November; Sydney. S.133.

    Google Scholar 

  131. Carey RM, Varma SK, Drake CR Jr, Thorner MO, Kovacs K, Rivier J, et al.1984Extopic secretion of corticotrophin-releasing factor as a cause of Cushing ‘s syndrome. N Engl J Med. 311:13–20.

    PubMed  CAS  Google Scholar 

  132. Asa SL, Kovacs K, Tindall GT, Barrow DL, Horvath E, Vecsei P. 1984Cushing’s disease associated with an intrasellar gangliocytoma producing corticotrophin-releasing factor. Ann Intern Med. 101: 789–93.

    PubMed  CAS  Google Scholar 

  133. Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W. 1992Development of Cushing’s syndrome in corticotrophin releasing factor transgenic mice. Endocrinology. 130: 3378–86.

    PubMed  CAS  Google Scholar 

  134. Gittoes NL, McCabe CJ, Verhaeg L, Sheppard MC, Franklyn JA. 1997Thyroid hormone and estrogen receptor expression in normal pituitary andnonfunctioning tumors of the anterior pituitary. J Clin Endocrinol Metab 82: 1960–7.

    PubMed  CAS  Google Scholar 

  135. Snyder PJ. 1985Gonadotroph cell adenomas of the pituitary. Endocrine Reviews. 6: 552–63.

    PubMed  CAS  Google Scholar 

  136. Scheithauer BW. 1985Pathology of the pituitary and sellar region: exclusive of pituitary adenomas. Pathol Annu. 20: 67–155.

    PubMed  Google Scholar 

  137. Capella C, Riva C, Leutner M, La Rosa S. 1995Pituitary lesions in multiple endocrine neoplasia syndrome (MENS) type 1. Pathol Res Pract. 191:345–7.

    PubMed  CAS  Google Scholar 

  138. Chandrasekharappak SC, Guru SC, Manickam P et al. 1997Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 276: 404–6.

    Google Scholar 

  139. Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Sag-gar S, Chandrasekharappa SC, Collins FS, Spiegel AM, Marx SJ, Burns AL. 1999Menin interacts with the API transcription factor JunD and represses JunD activated transcription. Cell. 96:143–152.

    PubMed  CAS  Google Scholar 

  140. Friedman E, Sakaguchi K, Bale AE, Falchetti A, Streeten E, Zimening MB, et al. 1989Clonality of parathyroid tumors in familial multiple endocrine neoplasia 11. N Engl J Med 321: 213–8.

    PubMed  CAS  Google Scholar 

  141. Thakker RV, Bouloux P, Wooding C, Chotai K, Broad PM, Spurn NK, et al. 1989Association of parathyroid tumors in multiple endocrine neoplasia with loss of alleles on chromosome 11. N Engl J Med 32;1218–224

    Google Scholar 

  142. Bystrom C, Larrson C, Blomberg C, Sandelin K, Falkmer U, Skogseid B, et al. 1990Localization of the MENI gene to a small region within chromosome 11q13 by deletion mapping in tumors. Proc Natl Acad Sci USA. 87: 1968–72.

    PubMed  CAS  Google Scholar 

  143. Bale AE, Norton JA, Wong EL, Fryburg JS, Maton PN, Oldfield EH, et al. 1991Allelic loss on chromosome 11 in hereditary and sporadic tumors related to familial multiple endocrine neoplasia type 1. Cancer Res 51: 11547

    Google Scholar 

  144. Boggild MD, Jenkinson S, Pistorello M, Boscaro M, Scanarini M, McTernan P, Perrett CW, Thakker RV, Clayton RN. 1994Molecular genetic studies of sporadic pituitary tumors. J Clin Endocrinol Metab. 78: 3 87–92.

    Google Scholar 

  145. Eubanks PJ, Sawicki MP, Sainara GJ, Gatti R, Nakainura Y, Tsao D, Johnson C, Hurwitz M, Wan YJ, Passaro EJ. 1994Putative tumor suppressor gene on chromosome 11 is important in sporadic endocrine tumor formation. Am J Surg. 167:180–5.

    PubMed  CAS  Google Scholar 

  146. Farrell WE, Simpson DJ, Bicknell J, Magnay JL, Kyrodimou E, Thakker RV, Clayton RN. 1990Sequence analysis and transcript expression of the MEN1 gene in sporadic pituitary tumors. Br J Cancer. 80: 44–50.

    Google Scholar 

  147. Stratakis CA, Carney JA, Lin JP, et al. 1996Carney complex, familial multiple neoplasia and lentiginosis syndrome. Analysis of kindreds and linkage to the short arm of chromosome 2. Journal of Clinical Investigation. 97:699–705.

    PubMed  CAS  Google Scholar 

  148. Watson JC, Stratakis CA, Bryant-Greenwood PK, Koch CA, Kirschner LS, Nguyen T, Carney JA, Oldfield EH. 2000Neurosurgical implications of Carney complex. J Neurosurg. 92:413–8.

    PubMed  CAS  Google Scholar 

  149. Stratakis CA, Kirschner LS. 2000Isolated Familial Somatotropinomas: Does the Disease Map to 11q13 or to 2pl6?J Clin Endocrinol Metab. 85(12):4920–4.

    PubMed  CAS  Google Scholar 

  150. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. 1991Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 325: 1688–95.

    PubMed  CAS  Google Scholar 

  151. Schwindingen WF, Francomano CA, Levine MA. 1992Identification of a mutatin in the gene encoding the alpha subunit of the stimulatory G-protein of adenylyl cyclase in McCue-Albright syndrome. Proc Natl Acad Sci USA. 89: 5152–6.

    Google Scholar 

  152. McKusick VA. 1994Polyostotic fibrous dysplasia [PFD; POFD; Albright syndrome; McCune-Albright syndrome; MAS]11thedition, Vol, Baltimore: John Hopkins University Press, pp. 1180–2.

    Google Scholar 

  153. Ringel MD, Schwindinger, Levine MA. 1995Clinical implications of genetic defects in G proteins. The molecular basis of the McCune-Albright syndrome and Albright hereditary osteodystrophy. Medicine. 75: 171–84.

    Google Scholar 

  154. Kovacs K, Stefaneanu L, Ezzat S, Smyth HS. 1994Prolactin-producing pituitary adenoma in a male-to-female transsexual patient with protracted estrogen administration. A morphologic study. Archives in Pathology and Laboratory Medicine. 118: 562–5.

    CAS  Google Scholar 

  155. Smith CL. 1999Cross-talk between peptide growth factor and estrogen receptor signalling pathways.Biology of Reproduction 58: 627–32.

    Google Scholar 

  156. Stefeananu L, Kovacs K, Horvath E, Lloyd RV, Buchfelder M, Fahlbusch R, Smyth H. 1994In situ hybridisation study of estrogen receptor messenger ribonucleic acid in human adenohypophyseal cells and pituitary adenomas. Journal of Clinical Endocrinology and Metabolism. 78: 83–8.

    Google Scholar 

  157. Jaffrain-Rea M. L., E. Petrangeli, F. Ortolani, B. Fraioli, A. Lise, V. Esposito, L.G. Spagnoli, O. Taniburrano, L. Frati, A. Gulino. 1996Cellular receptors for sex steroids in human pituitary adenomas. Journal of Endocrinology. 15: 175–84.

    Google Scholar 

  158. Nakao H, Koga M, Arao N, Kakao M, Sato B, Kisbimono S, Saitoh Y, Arita N, Mori S. 1989Enzyme immunoassay for estrogen receptor in human pituitary adenomas. Acta Endocrinologica 120:233–8.

    PubMed  CAS  Google Scholar 

  159. Pickett CA, Gutierrez-Hartmann A. 1998Molecular and cellular ontogeny of distinct pituitary cell types. In: Diseases of the pituitary: Diagnosis and treatment, Wierman ME, eds. Totowa: Human Press. 1–31.

    Google Scholar 

  160. Barlier A, Pellegrini-Bouiller F, Gunz O, Zamora AJ, Jaquet P, Enjalbert A. 1999Importance of gsp oncogene on the expression of genes coding for Gs-alpha, Pit-1, G12-alpha, and somatostatin receptor 2 in human adenomas: involvement in octreotide sensitivity. Journal of Clinical Endocrinology and Metabolism. 84: 2759–65.

    PubMed  CAS  Google Scholar 

  161. Lamonerie T, Tremblay JJ, Lanctot C, Therrien M, Gauthier Y, Drouin J. 1996PtxI, a bicoid-related horneo box transcription factor involved in transcription of the propio-melanocortin gene. Genes and development. 10:128–495.

    Google Scholar 

  162. Pellegrini-Bouiller I, Manrique C, Gunz G, Grino M, Zamora AJ, FigarellaBranger D, Grisoli F, Jaquet P, Enjalbert A. 1999Expression of the members of the Ptx family of transcription factors in human pituitary adenomas. J Clin Endcrinol Metab. 84:2212–20.

    CAS  Google Scholar 

  163. Skelly RH, Korbonits M, Grossman A, Besser GM, Monson JP, Geddes JF, Burrin JM. 2000Expression of the pituitary transcription factor Ptx-1, but not that of the trans-activating factor Prop-I, is reduced in corticotroph adenomas and is associated with decreased a-subunit secretion. J Clin Endocrinol Metab. 85:253–742.

    Google Scholar 

  164. Wu W, Cogan JD, Pfaffle RW, Dasen JS, Frisch H, O’Connell SM, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JAI, Rosenfeld MG 1998Mutations in PROP I cause familial combined pituitary hormone defficiency. Nature Genetics 18: 147–9.

    PubMed  CAS  Google Scholar 

  165. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Glieberman AS, Anderson B, Beamer WG, Rosenfeld MG 1996Pituitary lineage determination by the prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature. 384: 327–3.

    PubMed  CAS  Google Scholar 

  166. Nakamura S, Ohtsura A, Takamura N, Kitange G, Tokunaga Y, Yasunaga A, Shibata S, Yamashita S. 1999Prop-1 gene expression in human pituitary tumors. Journal of Clinical Endocrinology and Metabolism. 84:258–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heaney, A.P., Melmed, S. (2002). Etiology of Pituitary Tumours. In: Sheppard, M.C., Stewart, P.M. (eds) Pituitary Disease. Endocrine Updates, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1115-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1115-1_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5401-7

  • Online ISBN: 978-1-4615-1115-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics