Skip to main content

A Practical Guide to Information Analysis of Spike Trains

  • Chapter
Neuroscience Databases

Abstract

Information Theory enables different candidate coding strategies to be quantified and compared, and hence is a natural framework for studying neural coding. The main difficulty is that estimates of information from experimental data are prone to systematic sampling error. In this chapter, we present a step-by-step guide to how this error can be addressed, and reliable information estimates obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borst, A. and Theunissen, F. E. (1999) Information theory and neural coding. Nature Neuroscience 2, 947–957.

    Article  PubMed  CAS  Google Scholar 

  • Cover, T. M. and Thomas, J. A. (1991) Elements of information theory, Wiley, New York.

    Book  Google Scholar 

  • Miller, G. A. (1955) Note on the bias on information estimates. Information Theory in Psychology; Problems and Methods II-B, 95–100.

    Google Scholar 

  • Nemenman, I., Shafee, F. and Bialek, W. (2002) Entropy and Inference, Revisited in Advances in Neural Information Processing Systems 14. Dietterich, T. G., Becker, S. and Z. Ghahramani (Eds.), MIT Press, Cambridge, MA.

    Google Scholar 

  • Panzeri, S., Petersen, R. S., Schultz, S. R., Lebedev M. and Diamond, M. E. (2001) The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29, 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Panzeri, S. and Treves, A. (1996) Analytical estimates of limited sampling in different information measures. Network 7, 87–107.

    Article  Google Scholar 

  • Panzeri, S. and Schultz, S. R. (2001) A unified approach to the study of temporal, correlational and rate coding. Neural Comput. 13, 1311–1349.

    Article  PubMed  CAS  Google Scholar 

  • Panzeri, S., Schultz, S. R., Treves, A. and Rolls, E. T. (1999) Correlations and the encoding of information in the nervous system. Proc. R. Soc. Lond. B Biol Sci. 266, 1001–1012.

    Article  CAS  Google Scholar 

  • Petersen, R. S., Panzeri, S. and Diamond, M. E. (2001) Population coding of stimulus location in rat somatosensory cortex. Neuron 32, 503–514.

    Article  PubMed  CAS  Google Scholar 

  • Petroni, F. (2002) A computational analysis of the functional role of timing of action potentials in the cerebral cortex. Unpublished doctoral dissertation, University of Newcastle upon Tyne.

    Google Scholar 

  • Pola, G., Thiele, A., K. -P. Hoffmann and Panzeri, S. (2002) An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network: Special issue on statistical analysis of spike trains and information theory, submitted.

    Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Stevenick, R. R. and Bialek, W. (1996) Spikes: Exploring the neural code, MIT Press, Cambridge, MA.

    Google Scholar 

  • Schultz, S. R. and Panzeri, S. (2001) Temporal correlations and neural spike train entropy. Phys. Rev. Lett. 86, 5823–5826.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, C. E. (1948) A mathematical theory of communication. AT&T Bell Labs. Tech. J., 27, 379–423.

    Google Scholar 

  • Strong, S.P., Koberle R., de Ruyter van Stevenink, R.R. and Bialek, W. (1998) Entropy and information in neuronal spike trains. Phys. Rev. Lett. 80,197–200.

    Article  CAS  Google Scholar 

  • Treves, A. and Panzeri, S. (1995) The upward bias in measures of information derived from limited data samples. Neural Comput. 7, 399–407.

    Article  Google Scholar 

  • Victor, J. D. (2000) Asymptotic bias in information estimates and the exponential (bell) polynomials. Neural Comput. 12, 2797–2804.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, D. H. and Wolf, D. R. (1995) Estimating functions of probability distributions from a finite set of samples. Phys. Rev. E, 52, 6841–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pola, G., Schultz, S.R., Petersen, R.S., Panzeri, S. (2003). A Practical Guide to Information Analysis of Spike Trains. In: Kötter, R. (eds) Neuroscience Databases. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1079-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1079-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5384-3

  • Online ISBN: 978-1-4615-1079-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics