Skip to main content

Molecular and Pharmacological Aspects of the Developing Heart

  • Chapter
Cardiac Development

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 4))

  • 94 Accesses

Summary

From the evidence presented in this article, it is quite clear that fetal and newborn hearts are functionally less developed as compared to adult hearts. In immature hearts, different pharmacological responses differ from the adult hearts but these are species dependent. Regulation of the sympathetic system and β-adrenoceptor blocking agents which modulate the sympathetic activity affect the myocardium differently at various stages of development from fetus, neonates and adulthood. The role of the renin-angiotensin system is crucial in development as angiotensin II receptors are increased during fetal development and morphogenesis but these decline after birth. Ca2+-handling in neonates is not the same as in adult hearts as the intracellular Ca2+ in newborns is mainly regulated by mechanisms such as Ca2+- influx via L type Ca2+-channels and Na+-Ca2+ exchange in sarcolemma. Furthermore, Ca2+- uptake, storage and release by sarcoplasmic reticulum in neonatal hearts are less developed and thus the effects of various Ca2+-antagonists and other such agents are mediated through the Ca2+-channels and Na+-Ca2+ exchange. Responses to cardiac glycosides that modulate Na+-K+ ATPase and Na+-Ca2+ exchange activities are also determined by developmental changes in the heart. Since phosphodiesterases, which hydrolyze cAMP, undergo developmental changes, the responses of the heart to phosphodiesterase inhibitors vary markedly during the development. Although our understanding of the developmental aspects of the heart has increased significantly, the complexity of the developing heart and the mechanisms of action of different pharmacological agents in the immature heart still remain to be examined carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Downing SE, Talner NS, Gardner TH. 1965. Ventricular function in the newborn lamb. Am J Physiol 208:931–937.

    PubMed  CAS  Google Scholar 

  2. Friedman WE 1972. Intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis 15:87–111.

    Article  PubMed  CAS  Google Scholar 

  3. Hopkins SF, McCutcheon EP, Wekstein DR. 1973. Postnatal changes in rat ventricular function. Circ Res 32:685–691.

    Article  PubMed  Google Scholar 

  4. Alexender SPH, Peters JA. 1999. Trends in Pharmacological Sciences Receptors and Ion Channel Nomenclature Supplements, 10th ed., Elsevier Trend Journals, Cambridge.

    Google Scholar 

  5. Gauthier P, Nadeau RA, De Champlain J. 1975. The development of sympathetic innervation and functional state of the cardiovascular system in newborn dogs. Can J Physiol Pharmacol 53:763–776.

    Article  PubMed  CAS  Google Scholar 

  6. Lebowitz EA, Norick JS, Rudolph AM. 1972. Development of myocardial sympathetic innervation in the fetal lamb. Pediatr Res 6:887–893.

    Article  PubMed  CAS  Google Scholar 

  7. Langer GA, Brady AJ, Tan ST, Sarena SD. 1975. Correlation of the glycosides response, the force staircase and the action potential configuration in the neonatal rat heart. Circ Res 36:744–752.

    Article  PubMed  CAS  Google Scholar 

  8. Legato MJ. 1979. Cellular mechanisms of normal growth in the mammalian heart. I. Qualitative and quantitative features of ventricular architecture in the dog from birth to five months of age. Circ Res 44:250–262.

    Article  PubMed  CAS  Google Scholar 

  9. Legato MJ. 1979. Cellular mechanisms of normal growth in the mammalian heart. II. A quantitative comparison between the right and left ventricular myocytes in the dog from birth to five months of age. Circ Res 44:263–280.

    Article  PubMed  CAS  Google Scholar 

  10. Page E, Earley J, Power B. 1974. Normal growth of ultrastructures in rat left ventricular myocardial cells. Circ Res 35:12–16.

    Article  PubMed  Google Scholar 

  11. Smith HE, Page E. 1977. Ultrastructural changes in rabbit heart mitochondria during the perinatal period: Neonatal transition to aerobic metabolism. Dev Biol 57:109–117.

    Article  PubMed  CAS  Google Scholar 

  12. Roeske WR, Wildenthal K. 1981. Responsiveness to drugs and hormones in the murine model of cardiac ontogenesis. Pharmacol Ther 14:55–66.

    Article  PubMed  CAS  Google Scholar 

  13. Cheng JB, Goldfin A, Cornett LE, Roberts JM. 1981. Identification of p-adrenergic receptors using [3H] dihydroalprenolol in fetal sheep heart: direct evidence of qualitative similarity to the receptors in adult sheep heart. Pediatr Res 15:1083–1087.

    PubMed  CAS  Google Scholar 

  14. Feng ZP, Dryden WF, Gordon T 1989. Postnatal development of adrenergic responsiveness in the rabbit heart. Can J Physiol Pharmacol 67:883–889.

    Article  PubMed  CAS  Google Scholar 

  15. Friedman WF, Pool PE, Jacobowitz D, Seagren SC, Braunwald E. 1968. Sympathetic innervation of the developing rabbit heart. Circ Res 23:25–32.

    Article  PubMed  CAS  Google Scholar 

  16. Ursell PC, Ren CL, Danillo P. 1990. Anatomic distribution of autonomic neural tissue in the developing dog heart. I. Sympathetic innervation. Anat Res 226:71–80.

    Article  CAS  Google Scholar 

  17. Lloyd TR, Marvin WJ. 1989. Sympathetic innervation improves the contractile performance of neonatal cardiac myocytes in culture. J Mol Cell Cardiol 2:333–342.

    Google Scholar 

  18. Tucker DC, Gautier CH. 1990. Role of sympathetic innervation in cardiac development in oculo. Ann NY Acad Sci 588:120–129.

    Article  PubMed  CAS  Google Scholar 

  19. Walsh DA, Van Patten SM. 1994. Multiple pathway signal transduction by the cAMP dependent protein kinase. FASEB J 8:1227–1236.

    PubMed  CAS  Google Scholar 

  20. Kaumann AJ, Molenaar P. 1997. Modulation of human cardiac function through 4 beta adrenoceptor populations. Naunyn-Schmiedeberg’s Arch Pharmacol 355:667–681.

    Article  CAS  Google Scholar 

  21. Clapham DE. 1994. Direct G protein activation of ion channel. Annu Rev Neurosci 17:441–464.

    Article  PubMed  CAS  Google Scholar 

  22. Schneider T, Igellmund P, Hescheler J. 1997. G protein interaction with K+ and Ca2+ channels. Trends Pharmacol Sci 18:8–11.

    Article  PubMed  CAS  Google Scholar 

  23. Xiao R-P, Lakatta EG. 1993. Β1-adrenoceptors stimulation and β2-stimulation differ in their effects on contraction, cytosolic Ca2+ current in single rat ventricular cells. Circ Res 73:286–300.

    Article  PubMed  CAS  Google Scholar 

  24. Xiao R-P, Hohl C, Altshuld R, Jones L, Livingston B, Ziman B, Tantini B, Lakatta EG. 1994. β2- adrenergic receptor stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility or phospholamban phosphorylation. J Biol Chem 269:19151–19156.

    PubMed  CAS  Google Scholar 

  25. Xiao R-P, Ji X, Lakatta EG. 1995. Functional coupling of the β2-adrenoceptors to pertussis toxinsensitive G protein in cardiac myocytes. Mol Pharmacol 47:322–329.

    PubMed  CAS  Google Scholar 

  26. Han HM, Robinson FJ, Bilezikian JP, Steinberg SF. 1989. Developmental changes in guanine nucleotide regulatory proteins in the rat myocardial α1-adrenergic receptors complex. Circ Res 65:1763–1773.

    Article  PubMed  CAS  Google Scholar 

  27. Luetje CW, Tietje KM, Christian JL, Nathanson NM. 1988. Differential tissue expression and developmental regulation of guanine nucleotide binding regulatory proteins and their messenger RNAs in rat heart. J Biol Chem 263:13357–13365.

    PubMed  CAS  Google Scholar 

  28. Bartel S, Karczewski P, Krause EG. 1996. G-proteins, adenylyl cyclase and related phosphoproteins in the developing rat heart. Mol Cell Biochem 163/164:31–38.

    Article  PubMed  Google Scholar 

  29. Tanaka H, Shigenobu K. 1990. Role of β-adrenoceptors-adenylate cyclase system in the development decrease in sensitivity to isoprenaline in fetal and neonatal rat heart. Br J Pharmacol 100:138–142.

    Article  PubMed  CAS  Google Scholar 

  30. Artman M, Kithas PA, Wike JS, Strada SJ. 1988. Inotropic responses change during postnatal maturation in rabbit. Am J Physiol 255:H335–H342.

    PubMed  CAS  Google Scholar 

  31. Schumacher WA, Sheppard JR, Mirkin BL. 1982. Biological maturation and beta-adrenergic effectors: pre and postnatal development of the adenylate cyclase system in the rabbit heart. J Pharmacol Exp Ther 223:587–593.

    PubMed  CAS  Google Scholar 

  32. Hatijis CG. 1986. Forskolin-stimulated adenylate cyclase activity in fetal and adult rabbit myocar- dial membranes. Am J Obstet Gynecol 155:1326–1331.

    Google Scholar 

  33. Mahony L, Jones LR. 1986. Developmental changes in cardiac sarcoplasmic reticulum in sheep. J Biol Chem 261:15257–15265.

    PubMed  CAS  Google Scholar 

  34. L’Ecuyer TJ, Schulte D, Lin JJ-C. 1991. Thin filament changes during in vivo rat heart development. Pediatr Res 30:232–238.

    Article  PubMed  Google Scholar 

  35. McAuliffe JJ, Gao L, Solaro RJ. 1990. Changes in myofibrillar activation and troponin T isoform switching in developing rabbit heart. Circ Res 66:1204–1216.

    Article  PubMed  CAS  Google Scholar 

  36. Liu QY, Karpinski E, Pang PK. 1994. Changes in alpha-1-adrenoceptor coupling to Ca2+ channels during development in rat heart. FEBS Lett 338:234–238.

    Article  PubMed  CAS  Google Scholar 

  37. Inayatulla A, Li DY, Chemtob S, Verma DR. 1994. Ontogeny of positive inotropic responses to sympathoinimetic agents and of myocardial adrenoceptors in rats. Can J Physiol Pharmacol 72: 361–367.

    Article  PubMed  CAS  Google Scholar 

  38. Kojima M, Ishima T, Taniguchi N, Kimura K, Sada H, Sperelakis N. 1990. Developmental changes in beta-adrenoceptors, muscarinic cholinoceptors and Ca2+ channels in rat ventricular muscles. Br J Pharmacol 99:334–339.

    Article  PubMed  CAS  Google Scholar 

  39. Navarro HA, Kudlacz EM, Slotkin TA. 1991. Control of adenylate cyclase activity in developing rat heart and liver: Effects of prenatal exposure to terbutaline or dexamethasone. Biol Neonate 60:127–136.

    Article  PubMed  CAS  Google Scholar 

  40. Reuter H. 1985. Calcium movements through cardiac cell membranes. Med Res Rev 5:427–440.

    Article  PubMed  CAS  Google Scholar 

  41. Tsien RW. 1983. Calcium channels in excitable cell membranes. Annu Rev Physiol 45:341–358.

    Article  PubMed  CAS  Google Scholar 

  42. Burnstock G. 1972. Purinergic nerves. Pharmacol Rev 24:509–581.

    PubMed  CAS  Google Scholar 

  43. De Young MB, Scarpa A. 1987. Extracellular ATP induces Ca2+ transients in cardiac myocytes which are potentiated by norepinephrine. FEBS Lett 223:53–58.

    Article  PubMed  Google Scholar 

  44. Danziger RS, Raffaeli S, Moreno-Sanchez R, Sakai M, Capagrossi MC, Spurgeon HA, Hanford RG, Lakatta EG. 1988. Extracellular ATP has a potent effect to enhance cytosolic calcium and contractility in single ventricular myocytes. Cell Calcium 9:193–199.

    Article  PubMed  CAS  Google Scholar 

  45. Williams M. 1987. Purine receptors in mammalian tissues: Pharmacology and functional significance. Annu Rev Pharmacol Toxicol 27:315–345.

    Article  PubMed  CAS  Google Scholar 

  46. Zhao D, Dhalla NS. 1990. [35S] ATP gamma S binding sites in purified heart sarcolemma membrane. Am J Physiol 258:C185–C188.

    PubMed  CAS  Google Scholar 

  47. Scamps F, Maejoux E, Charlemagne D, Vassort G. 1990. Calcium current in single cells isolated from neonatal and hypertrophied rat heart. Effect of beta-adrenergic stimulation. Circ Res 67: 1007–1016.

    Article  PubMed  CAS  Google Scholar 

  48. Legssyer A, Poggioli J, Renard D, Vassort G. 1988. ATP and other adenine compounds increase mechanical activity and inositol trisphosphate production in rat heart. J Physiol 401:185–199.

    PubMed  CAS  Google Scholar 

  49. Driscoll DJ, Gillette PC, Ezrailson EG, Schwartz A. 1978. Inotropic response of the neonatal canine myocardium to dopamine. Pediatr Res 12:42–45.

    Article  PubMed  CAS  Google Scholar 

  50. Park MK, Sheridan PH, Morgan WW, Beck N. 1980. Comparative inotropic response of newborn and adult papillary muscle to isoproterenol and calcium. Dev Pharmacol Ther 1:70–82.

    PubMed  CAS  Google Scholar 

  51. Nishioka K, Nakanashi T, George BL, Jamakarni JM. 1981. The effect of calcium on the inotropy of catecholamine and paired electrical stimulation in the newborn and adult myocardium. J Mol Cell Cardiol 13:511–520.

    Article  PubMed  CAS  Google Scholar 

  52. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler R, Saye J, Smith R. 1993. Angiotensin II receptors and angiotensin II receptor antagonist. Pharmacol Rev 45:205–251.

    PubMed  CAS  Google Scholar 

  53. Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Dunicia JV, Pease LJ, Wong PC, Wexler RR, Johnson AL, Timmermans PBMWM. 1989. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203.

    Article  PubMed  CAS  Google Scholar 

  54. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. 1991. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature (Lond) 351:233–236.

    Article  CAS  Google Scholar 

  55. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasagawa M, Matsuba Y, Inagami T. 1991. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type 1 receptor. Nature (Lond) 351:230–233.

    Article  CAS  Google Scholar 

  56. Hayashida W, Horiuchi M, Dzau VJ. 1996. Intracellular third loop domain of angiotensin type-2 receptor. Role in mediating signal transduction and cellular function. J Biol Chem 271: 21985–21992.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang J, Pratt RE. 1996. The AT2 receptor selectively associates with Gi-alpha-2 and Gi-alpha 3 in the rat fetus. J Biol Chem 271:15026–15033.

    Article  PubMed  CAS  Google Scholar 

  58. Matsubara H. 1998. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 83:1182–1191.

    Article  PubMed  CAS  Google Scholar 

  59. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Nad Acad Sci USA 99:156–160.

    Article  Google Scholar 

  60. Baker KM, Booz GW, Dostal DE. 1992. Cardiac actions of angiotensin II: Role of an intracardiac renin angiotensin system. Annu Rev Physiol 54:227–241.

    Article  PubMed  CAS  Google Scholar 

  61. Sadoshima J, Izumo S. 1997. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571.

    Article  PubMed  CAS  Google Scholar 

  62. Sugden PH, Clerk A. 1998. Cellular mechanism of cardiac hypertrophy. J Mol Med 76:725–746.

    Article  PubMed  CAS  Google Scholar 

  63. Baker KM.Aceto JF. 1990. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610–H618.

    PubMed  CAS  Google Scholar 

  64. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: Critical role of the AT1 receptor subtype. Circ Res 73:413–423.

    Article  PubMed  CAS  Google Scholar 

  65. Wacla H, Zile MR, Ivester CT, Cooper GT, McDermott PJ. 1996. Comparative effects of contraction and angiotensin II receptors on rat cardiac fibroblasts. Circulation 88:2849–2861.

    Google Scholar 

  66. Liu Y, Leri A, Li B, Wang X, Cheng W, Kajstura J, Anversa P. 1998. Angiotensin II stimulation in vitro induces hypertrophy of normal and postinfarcted ventricular myocytes. Circ Res 82: 1145–1159.

    Article  PubMed  CAS  Google Scholar 

  67. Ritchie RH, Schiebinger RJ, LaPointe MC, Marsch JD. 1998. Angiotensin II induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol 275:H1370–H1374.

    PubMed  CAS  Google Scholar 

  68. Sadoshima J, Qiu Z, Morgan JP, Izumo S. 1995. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca2+-dependent signaling. Circ Res 76:1–15.

    Article  PubMed  CAS  Google Scholar 

  69. Kudoh S, Komuro I, Mizumo T, Yamazaki T, Zou Y, Shiojima I, Takekoshi N, Yazaki Y. 1997. Angiotensin II stimulates cjun NH2 terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 80:139–146.

    Article  PubMed  CAS  Google Scholar 

  70. Takano H, Kumuro I, Zou Y, Kudoh S, Yamazaki T, Yazaki Y. Activation of p70S6 protein kinase in necessary for angiotensin H-induced hypertrophy in neonatal rat cardiac myocytes. FEBS Lett 379:255–259.

    Google Scholar 

  71. Kodoma H, Fuduka K, Pan J, Makino S, Sano M, Takashi T, Hori S, Ogawa S. 1998. Biphasic activation of the JAK/STAT pathway by angiotensin II in rat cardiomyocytes. Circ Res 82:244–250.

    Article  Google Scholar 

  72. Akoi H, Izumo S, Sadoshima J. 1998. Angiotensin II activates Rho A in cardiac myocytes: A critical role of Rho A in angiotensin induced premyofibrils formation. Circ Res 82:666–676.

    Article  Google Scholar 

  73. Force T, Pombo CM, Avruch JA, Bonnventure JV, Kyriakis JM. 1996. Stress activated protein kinases in cardiovascular disease. Circ Res 44:322–329.

    Google Scholar 

  74. Glennon PE, Kaddoura S, Sale EM, Sale GJ, Fuller SJ, Sugden PH. 1996. Depletion of mitogenactivated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ Res 78:954–961.

    Article  PubMed  CAS  Google Scholar 

  75. Nakamura K, Fushini K, Kouch H, Mihara K, Miayazaki M, Ohe T, Namba M. 1998. Inhibitory effects of antioxidants on neonatal rats cardiac myocytes hypertrophy induced by tumor necrosis factor-α and angiotensin II. Circulation 98:794–799.

    Article  PubMed  CAS  Google Scholar 

  76. Ito H, HirataY, Adachi S,Tanaka M,Tsujino M, Koike A, Nogami A, Murumo F, Hiroe M. 1993. Endothelin-1 is an autocrine/paracrine factor in the factor in the mechanism of angiotensin II induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92:398–403.

    Article  PubMed  CAS  Google Scholar 

  77. Sadoshima J, XuY, Slayer HS, Izumo S. 1993. Autocrine release of angiotensin II mediates stretchinduced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984.

    Article  PubMed  CAS  Google Scholar 

  78. Thienelt CD, Weinberg EO, Bartunek J, Lorell BH. 1997. Load-induced growth response in isolated adult rat hearts: role of the AT1 receptor. Circulation 95:2677–2683.

    Article  PubMed  CAS  Google Scholar 

  79. Kent RL, McDermot PJ. 1996. Passive load and angiotensin II evoke differential response of gene expression and protein synthesis in cardiac myocytes. Circ Res 78:829–838.

    Article  PubMed  CAS  Google Scholar 

  80. Rasmussen H. 1986. The calcium massager system (1). N Engl J Med 314:1094–1101.

    Article  PubMed  CAS  Google Scholar 

  81. Wood AJ. 1989. Calcium antagonist pharmacological differences and similarities. Circulation 80 (Suppl. IV):184–188.

    Google Scholar 

  82. Ferrante J, Triggle DJ. 1990. Drug and disease induced regulation of voltage-dependent calcium channel. Pharmacol Rev 42:29–44.

    PubMed  CAS  Google Scholar 

  83. Kass RS. 1994. Ionic basis of electrical activity in the heart. In: Sperelakis N, ed. Physiology and Pathophysiology of the Heart. 3rd ed. Norwell, MA: Kluwer Academic Publishers, 77–90.

    Google Scholar 

  84. Tsien RW, Ellinor PT, Home WA. 1991. Molecular diversity of voltage-dependent Ca channels. Trends Pharmacol Sci 12:349–354.

    Article  PubMed  CAS  Google Scholar 

  85. Kameyama M, Hescheler J, Hofmann F, Trautwein W 1986. Modulation of Ca current during the phosphorylation cycle in guinea-pig heart. Pflugers Arch 407:123–128.

    Article  PubMed  CAS  Google Scholar 

  86. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ. 1994. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74:365–507.

    PubMed  CAS  Google Scholar 

  87. Herzig S, Patil P, Neumann J, Staschen CM, Yue DT 1993. Mechanisms of (3-adrenergic stimulation of cardiac Ca2+ channels revealed by discrete-time Markov analysis of slow gating. Biophys J 65:1599–1612.

    Article  PubMed  CAS  Google Scholar 

  88. Yue DT, Herzig S, Marban E. 1990. β-adrenergic stimulation of calcium channels occurs by poten- tiation of high-activity gating modes. Proc Nad Acad Sci USA 87:753–757.

    Article  CAS  Google Scholar 

  89. Reuter H, Kokubun S, Prodhom B. 1986. Properties and modulation of cardiac calcium channels. J Exp Biol 124:191–201.

    PubMed  CAS  Google Scholar 

  90. Brown AM. 1993. Membrane-delimited cell signaling complexes: direction channel regulation by G proteins. J Membr Biol 131:93–104.

    Article  PubMed  CAS  Google Scholar 

  91. Catterall WA. 1991. Functional subunit structure of voltage-gated calcium channels. Science 253: 1499–1500.

    Article  PubMed  CAS  Google Scholar 

  92. Klockner U, Itagaki K, Bodi I, Schwartz A. 1992. Beta subunit expression is required for cAMPdependent increase of cloned cardiac and vascular calcium current. Pflugers Arch 420:413–415.

    Article  PubMed  CAS  Google Scholar 

  93. Haase H, Karczewski P, Beckert R, Krause EG. 1993. Phosphorylation of the L-type calcium channel beta subunit in involved in beta-adrenergic signal transduction in canine myocardium. FEBS Lett 335:217–222.

    Article  PubMed  CAS  Google Scholar 

  94. Sculptoreanu A, Rotman E, Takahashi M, ScheuerT, Catterall WA. 1993. Voltage-dependent potentiation of the activity of cardiac L-type calcium channel alpha 1 subunits due to phosphorylation by cAMP-dependent protein kinase. Proc Natl Acad Sci USA 90:10135–10139.

    Article  PubMed  CAS  Google Scholar 

  95. Diebold RJ, Koch WJ, Ellinor PT, Wang JJ, Muthuchamy M, Wieczorek DF, Schwartz A. 1992. Mutually exclusive axon splicing of the cardiac calcium channel alpha 1 subunit gene generates developmentally regulated isoforms in the rat heart. Proc Natl Acad Sci USA 89:1497–1501.

    Article  PubMed  CAS  Google Scholar 

  96. Sperelakis N, Haddad GE. 1995. Developmental changes in membrane electrical properties of the heart. In: Sperelakis N, ed. Physiology and Pathophysiology of the Heart. Norwell, MA: Kluwer Academic Publishers, 669–700.

    Google Scholar 

  97. Chen FM, Yamamura HI, Roeske WR. 1979. Ontogeny of mammalian myocardial beta-adrenergic receptors. Eur J Pharmacol 58:255–264.

    Article  PubMed  CAS  Google Scholar 

  98. Chen FC, Yamamura HI, Roeske WR. 1982. Adenylate cyclase and beta adrenergic receptor devel- opment in the mouse heart. J Pharmacol Exp Ther 222:7–13.

    PubMed  CAS  Google Scholar 

  99. Kojima M, Sperelakis N, Sada H. 1990. Ontogenesis of transmembrane signaling systems of control of cardiac Ca2+ channels. J Dev Physiol 14:181–219.

    PubMed  CAS  Google Scholar 

  100. Haddox MK, Roeske WR, Russell DH. 1979. Independent expression of cardiac type I and II cyclic AMP-dependent protein kinase during murine embryogenesis and postnatal development. Biochim Biophys Acta 585:527–534.

    Article  PubMed  CAS  Google Scholar 

  101. Slotkin TA, Lau C, Seidler FJ. 1994. Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins. Toxicol Appl Pharmacol 129:223–234.

    Article  PubMed  CAS  Google Scholar 

  102. Yu SS, Lefkowitz RJ, Hausdorff WP 1993. Beta-adrenergic receptor sequestration: a potential mechanism of receptor resensitization. J Biol Chem 268:337–341.

    PubMed  CAS  Google Scholar 

  103. Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ. 1993. Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 87:454–463.

    Article  PubMed  CAS  Google Scholar 

  104. Ungerer M, Parruti G, Böhm M, Puzicha M, DeBlasi A, Erdmann E, Lohse MJ. 1994. Expression of β-arrestins and β1 -adrenergic receptor kinases in the failing human heart. Circ Res 74:206–213.

    Article  PubMed  CAS  Google Scholar 

  105. Gilbert EM, Olsen SL, Renlund DG, Bristow MR. 1993. Beta-adrenergic receptor regulation and left ventricular function in idiopathic dilated cardiomyopathy. Am J Cardiol 71:23C–29C.

    Article  PubMed  CAS  Google Scholar 

  106. Bristow MR, Feldman AM. 1992. Changes in the receptor-G protein-adenylyl cyclase system in heart failure from various types of heart muscle disease. Basic Res Cardiol 87 (Suppl 1):15–35.

    PubMed  CAS  Google Scholar 

  107. Dhalla NS, Dixon IM, Suzuki S, Kaneko M, Kobayashi A, Beamish RE. 1992. Changes in adrenergic receptors during the development of heart failure. Mol Cell Biochem 114:91–95.

    Article  PubMed  CAS  Google Scholar 

  108. Pennica D, King KL, Shaw KJ, Luis E, Rullamas J, Luoh SM, Darbonne WC, Knutzon DS, Yen R, Chien KR. 1995. Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci USA 92:1142–1146.

    Article  PubMed  CAS  Google Scholar 

  109. Chien KR, Knowlton KU, Zhu H, Chien S. 1991. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037–3046.

    PubMed  CAS  Google Scholar 

  110. Koch WJ, Ellinor PT, Schwartz A. 1990. cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. J Biol Chem 265:17786–17791.

    PubMed  CAS  Google Scholar 

  111. Gaudin C, Ishikawa Y, Wight DC, Madhavi V, Nadal-Ginard B, Wagne T, Vatner DE, Homey CJ. 1995. Overexpression of Gs alpha protein in hearts of transgenic mice. J Clin Invest 95:1676–1683.

    Article  PubMed  CAS  Google Scholar 

  112. Hoerter J, Mazet F, Vassort G. 1981. Perinatal growth of the rabbit cardiac cell: possible implication for the mechanism of relaxation. J Mol Cell Cardiol 13:725–740.

    Article  PubMed  CAS  Google Scholar 

  113. Nakanishi T, Jarmakani JM. 1984. Development changes in myocardial mechanical function and subcellular organelles. Am J Physiol 246:H615–H625.

    PubMed  CAS  Google Scholar 

  114. Boucek RJ, Shelton ME, Artman M, Landon E. 1985. Myocellular calcium regulation by the sarcolemmal membrane in the adult and immature rabbit heart. Basic Res Cardiol 80:316–325.

    Article  PubMed  Google Scholar 

  115. Artman M, Graham TP, Boucek RJ. 1985. Effects of postnatal maturation on myocardial contractile response to calcium antagonists and changes in contraction frequency. J Cardiovasc Pharmacol 7:850–855.

    Article  PubMed  CAS  Google Scholar 

  116. Seguchi M, Harding JA, Jarmakani JM. 1986. Developmental change in the function of sarcoplasmic reticulum. J Mol Cell Cardiol 18:189–195.

    Article  PubMed  CAS  Google Scholar 

  117. Seguchi M, Jarmakani JM, George BL, Harding JA. 1986. Effects of calcium antagonists on mechanical function in the neonatal heart. Pediatr Res 20:838–842.

    Article  PubMed  CAS  Google Scholar 

  118. Klitzner T, Friedman WE 1988. Excitation-contraction coupling in developing mammalian myocardium: evidence from voltage clamp studies. Pediatr Res 23:428–432.

    Article  PubMed  CAS  Google Scholar 

  119. Chin TK, Friedman WF, Klitzner TS. 1989. Developmental changes in cardiac myocyte Ca2+ regulation. Circ Res 67:574–579.

    Article  Google Scholar 

  120. Jarmakani JM, Nakanishi T, George BL, Bers D. 1982. Effect of extracellular calcium on myocardial mechanical function in neonatal rabbit. Dev Pharmacol Ther 5:1–13.

    PubMed  CAS  Google Scholar 

  121. Boucek RJ, Citak M, Graham TP, Artman M. 1987. Effects of postnatal maturation on postrest potentiation in isolated rabbit atria. Pediatr Res 22:524–530.

    Article  PubMed  Google Scholar 

  122. Wetzel GT, Chen FH, Klitzner TS. 1991. L- andT- type calcium channels in acutely isolated neonatal and adult cardiac myocytes. Pediatr Res 30:80–89.

    Google Scholar 

  123. Fleckenstein A. 1993. Calcium Antagonism in Heart and Smooth Muscle. J Willey and Sons, New York.

    Google Scholar 

  124. Ostadal B, Skovranek J, Kolar F, Janatova T, Krause EG, Ostadalova I. 1987. Calcium antagonist and the developing heart. Biomed Biochem Acta 46:S522–S526

    CAS  Google Scholar 

  125. Klitzner TS, Chen F, Raven RR, Wetzel GT, Friedman WF. 1991. Calcium current and tension generation in immature mammalian myocardium: effects of diltiazem. J Mol Cell Cardiol 23: 807–815.

    Article  PubMed  CAS  Google Scholar 

  126. Dodd DA, Boucek RJ Jr. 1989. Altered calcium channel agonist effects in newborn rabbits. Pediatr Res 25:23A.

    Google Scholar 

  127. Sperelakis N. 1972. (Na+-K+)-ATP activity of embryonic chick heart and skeletal muscles as a function of age. Biochem Biophys Acta 266:230–237.

    Article  PubMed  CAS  Google Scholar 

  128. Hanson GL, Schilling WP, Michael LH. 1993. Sodium-potassium pump and sodium and calcium exchange in adult and neonatal canine cardiac sarcolemma. Am J Physiol 264:H320–H326.

    PubMed  CAS  Google Scholar 

  129. Barry WH, Bridge JH. 1993. Intracellular calcium homeostasis in cardiac myocytes. Circulation 87:1806–1815.

    Article  PubMed  CAS  Google Scholar 

  130. Katz AM. 1992. Physiology of the Heart. New York: Raven Press.

    Google Scholar 

  131. Philipson KD, Nicoll DA. 1993. Molecular and kinetic aspects of sodium-calcium exchange. Int Rev Cytol 137C:199–227.

    PubMed  CAS  Google Scholar 

  132. Artman M. 1992. Developmental changes in myocardial contractile response to inotropic agents. Cardiovasc Res 26:3–13.

    Article  PubMed  CAS  Google Scholar 

  133. George BL, Nakanshi T, Jamakarni JM. 1979. The effect of developmental changes in membrane permeability to Ca2+ on cardiac function. Pediatr Res 13:344–347.

    Google Scholar 

  134. Khatter JC, Agbanyo M, Navaratnam S, Hoeschen RJ. 1989. Mechanisms of developmental increase in the sensitivity to ouabain. Dev Pharmacol Ther 12:128–136.

    PubMed  CAS  Google Scholar 

  135. Khatter JC, Navaratnam S, Hoeschen RJ. 1988. Protective effect of verapamil upon ouabain-induced arrhythmias. Pharmacology 38:380–389.

    Article  Google Scholar 

  136. Goshima K, Wakabayashi S. 1981. Involvement of a Na+, Ca2+ exchange system in the genesis of ouabain-induced arrhythmias of cultured myocardial cells. J Moll Cell Cardiol 13:489–509.

    Article  CAS  Google Scholar 

  137. Chen F, Molline G, Killner TS, Philipson KD, Frank JS. 1995. Distribution of Na+/Ca2+ exchange protein in developing rabbit myocytes. Am J Physiol 268:C1126–C1132.

    PubMed  CAS  Google Scholar 

  138. Carafoli E. 1987. Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433.

    Article  PubMed  CAS  Google Scholar 

  139. Nakanshi T, Jaymakani JM. 1981. Effect of extracellular sodium on mechanical function in the newborn rabbit. Dev Pharmacol Ther 2:188–200.

    Google Scholar 

  140. Boerth RC. 1975. Decreased sensitivity of newborn myocardium to the positive inotropic effects of ouabain. In: Morselli PL, Garattini S, Serenit F, eds. Basic and New Therapeutic Aspects of Perinatal Pharmacology. NewYork: Raven Press 191–199.

    Google Scholar 

  141. Lathrop DA, Varro A, Gaum WE, Kaplan S. 1989. Age related changes in electromechanical properties of canine ventricular muscle: effect of ouabain. J Cardiovasc Pharmacol 14:681–687.

    Article  PubMed  CAS  Google Scholar 

  142. Vornanen M. 1987. Effects of caffeine on the mechanical properties of developing rat heart ventricles. Comp Biochem Physiol 78C:239–334.

    Google Scholar 

  143. Hoerter J, Vassort G. 1982. Participation of the sarcolemma in the control of relaxation of the mammalian heart during perinatal development. In: Chazov E, Smirnov V, Dhalla NS, eds. Advances in Myocardiology. NewYork: Plenum Medical, 373–380.

    Google Scholar 

  144. Vetter R, Will H. 1986. Sarcolemmal Na-Ca exchange and sarcoplasmic reticulum calcium uptake in developing chick heart. J Mol Cell Cardiol 18:1267–1275.

    Article  PubMed  CAS  Google Scholar 

  145. Meno H, Jarmakani JM, Philipson KD. 1988. Sarcolemmal calcium kinetics in the neonatal heart. J Mol Cell Cardiol 20:585–591.

    Article  PubMed  CAS  Google Scholar 

  146. Binah O, Leagato MJ, Danilo P, Rosen MR. 1983. Developmental changes in the cardiac effect of amrinone in the dog. Circ Res 52:747–752.

    Article  PubMed  CAS  Google Scholar 

  147. Klitzner TS, Shapir Y, Ravin R, Friedman WE 1990. The biphasic effect of amrinone on tension development in newborn mammalian myocardium. Pediatr Res 27:144–147.

    Article  PubMed  CAS  Google Scholar 

  148. Artman M, Kithas PA, Wike JS, Crump DB, Sarda SJ. 1989. Inotropic response to cyclic nucleotide phosphodiesterase inhibitors in immature and adult rabbit myocardium. J Cardiovasc Pharmacol 13:146–154.

    PubMed  CAS  Google Scholar 

  149. Kithas PA, Artman M, Thompson WJ, Strada SJ. 1989. Subcellular distribution of high-affinity type IV cyclic AMP phosphodiesterase activities in rabbit ventricular myocardium: relation to post-natal maturation. J Mol Cell Cardiol 21:507–517.

    Article  PubMed  CAS  Google Scholar 

  150. Kithas PA, Artman M, Thompson WJ, Strada SJ. 1988. Subcellular distribution of high-affinity type IV cyclic AMP phosphodiesterase activity in rabbit ventricular myocardium: relation to the effects of cardiotonic drugs. Circ Res 62:782–789.

    Article  PubMed  CAS  Google Scholar 

  151. Ogawa S, Nakanshi T, Kamata K,Takao A. 1987. Effect on milirone on myocardial mechanical and cyclic AMP content in fetal rabbit. Pediatr Res 22:282–285.

    Article  PubMed  CAS  Google Scholar 

  152. Okuda H, Nakanshi T, Nakazawa M, Takao A. 1987. Effect of isoproterenol on myocardial mechanical function and cyclic AMP content in the fetal rabbit. J Mol Cell Cardiol 19:151–157.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rathi, S.S., Bhugra, P., Dhalla, N.S. (2002). Molecular and Pharmacological Aspects of the Developing Heart. In: Ostadal, B., Nagano, M., Dhalla, N.S. (eds) Cardiac Development. Progress in Experimental Cardiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0967-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0967-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5328-7

  • Online ISBN: 978-1-4615-0967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics