Skip to main content

Data Assimilation with Sequential Gaussian Processes

  • Chapter
Uncertainty in Geometric Computations

Abstract

We study a data assimilation problem using Gaussian processes (GPs) where the GPs act as latent variables for the observations. Inference is done using a convenient parameterisation and sequential learning for a faster algorithm. We are addressing the disadvantage of the GPs, namely the quadratic scaling of the parameters with data and eliminate the scaling by using a fixed number of parameters. The result is a sparse representation that allows us to treat problems with a large number of observations. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data.

This article is a revised version of “Online Learning of Wind-Field Models”, published in the Proceedings of the International Conference on Artificial Neural Networks, Vienna, 2001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernardo, J. M. and Smith, A. F. (1994). Bayesian Theory. John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press, New York, N.Y.

    Google Scholar 

  • Csato, L., Cornford, D., and Opper, M. (2001). Online learning of wind-field models. In International Conference on Artificial Neural Networks, pages 300–307.

    Google Scholar 

  • Csato, L. and Opper, M. (2002). Sparse on-line Gaussian Processes. Neural Computation, 14(3):641–669.

    Article  MATH  Google Scholar 

  • Csato, L. and Opper, M. (prep). Greedy sparse approximation to Gaussian Processes by relative entropy projection. Technical report, Neural Computing Research Group.

    Google Scholar 

  • Daley, R. (1991). Atmospheric Data Analysis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Evans, D. J., Cornford, D., and Nabney, I. T. (2000). Structured neural network modelling of multi-valued functions for wind retrieval from scatterometer measurements. Neurocomputing Letters, 30:23–30.

    Article  Google Scholar 

  • Evensen, G. (2001). Sequential data assimilation for nonlinear dynamics: the ensemble Kalmam Filter. In Pinardi, N. and Woods, J. D., editors, Ocean Forecasting: Conceptual basis and applications. Springer-Verlag.

    Google Scholar 

  • Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C. (1997). Unified notation for data assimilation: Operational, sequential and variational. Journal of the Meteorological Society of Japan, 75:181–189.

    Google Scholar 

  • Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Applic., 33:82–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenc, A. C. (1986). Analysis methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 112:1177–1194.

    Article  Google Scholar 

  • Minka, T. P. (2000). Expectation Propagation for Approximate Bayesian Inference. PhD thesis, Dep. of Electrical Eng. and Comp. Sci.; MIT.

    Google Scholar 

  • Nabney, I. T., Cornford, D., and Williams, C. K. I. (2000). Bayesian inference for wind field retrieval. Neurocomputing Letters, 30:3–11.

    Article  Google Scholar 

  • Offiler, D. (1994). The calibration of ERS-1 satellite scatterometer winds. Journal of Atmospheric and Oceanic Technology, 11:1002–1017.

    Article  Google Scholar 

  • Opper, M. (1998). A Bayesian approach to online learning. In On-Line Learning in Neural Networks, pages 363–378. Cambridge Univ. Press.

    Google Scholar 

  • Opper, M. and Winther, O. (1999). Gaussian processes and SVM: Mean field results and leave-one-out estimator. In Smola, A., Bartlett, P., Schoelkopf, B., and Schuurmans, C., editors, Advances in Large Margin Classifiers, pages 43–65. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Roweis, S. and Ghahramani, Z. (2001). An EM algorithm for identification of nonlinear dynamical systems. In Haykin, S., editor, Kalman Filtering and Neural Networks. Wiley.

    Google Scholar 

  • Schoelkopf, B., Burges, C. J., and Smola, A. J., editors (1999). Advances in kernel methods (Support Vector Learning). The MIT Press.

    Google Scholar 

  • Stoffelen, A. and Anderson, D. (1997). Ambiguity removal and assimiliation of scatterometer data. Quarterly Journal of the Royal Meteorological Society, 123:491–518.

    Article  Google Scholar 

  • Tipping, M. (2000). The Relevance Vector Machine. In Solla, S. A., Leen, T. K., and Mueller, K.-R., editors, NIPS, volume 12, pages 652–658. The MIT Press.

    Google Scholar 

  • Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New York, NY.

    MATH  Google Scholar 

  • Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian processes for regression. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, NIPS, volume 8. The MIT Press.

    Google Scholar 

  • Wolf, D. R. (1999). A Bayesian reflection on surfaces. Entropy, l(4):69–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Csato, L., Cornford, D., Opper, M. (2002). Data Assimilation with Sequential Gaussian Processes. In: Winkler, J., Niranjan, M. (eds) Uncertainty in Geometric Computations. The Springer International Series in Engineering and Computer Science, vol 704. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0813-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0813-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5252-5

  • Online ISBN: 978-1-4615-0813-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics