Skip to main content

Affine Arithmetic and Bernstein Hull Methods for Algebraic Curve Drawing

  • Chapter
Uncertainty in Geometric Computations

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 704))

  • 198 Accesses

Abstract

We compare approaches to the location of the algebraic curve f(x,y) = 0 in a rectangular region of the plane, based on recursive use of conservative estimates of the range of the function over a rectangle. Previous work showed that performing interval arithmetic in the Bernstein basis is more accurate than using the power basis, and that affine arithmetic in the power basis is better than using interval arithmetic in the Bernstein basis. This paper shows that using affine arithmetic with the Bernstein basis gives no advantage over affine arithmetic with the power basis. It also considers the Bernstein coefficient method based on the convex hull property, which has similar performance to affine arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berchtold, J., The Bernstein Form in Set-Theoretic Geometric Modelling, PhD Thesis, University of Bath, 2000.

    Google Scholar 

  2. Berchtold, J., Bowyer, A., Robust Arithmetic for Multivariate Bernstein-Form Polynomials, Computer Aided Design, 2000, 32: 681–689.

    Article  MATH  Google Scholar 

  3. Bowyer, A., Berchtold, J., Eisenthal, D., Voiculescu, I., and Wise, K., Interval Methods in Geometric Modelling, Geometric Modeling and Processing 2000, Eds. Martin, R., Wang, W., IEEE Computer Society Press, 2000, 321–327.

    Chapter  Google Scholar 

  4. Chandler, R. E., A Tracking Algorithm for Implicitly Defined Curves, IEEE Computer Graphics & Applications, 1988, 8(2): 83–89.

    Article  MathSciNet  Google Scholar 

  5. Comba, J. L. D., Stolfi, J., Affine Arithmetic and its Applications to Computer Graphics, Anais do VII SIBGRAPI (Brazilian Symposium on Computer Graphics and Image Processing), Recife, Brazil, 1993, 9–18.

    Google Scholar 

  6. Duff, T, Interval Arithmetic and Recursive Subdivision for Implicit Functions and Constructive Solid Geometry, Computer Graphics (SIG-GRAPH’92 Proceedings), 1992, 26(2): 131–138.

    MathSciNet  Google Scholar 

  7. R. T. Farouki, V. T. Rajan, On the Numerical Condition of Polynomials in Bernstein Form, Computer Aided Geometric Design, 191–216, 1987.

    Google Scholar 

  8. de Figueiredo, L. H., Surface Intersection Using Affine Arithmetic, Proceedings of Graphics Interface’96, Eds. MacKenzie S., Stewart J., Morgan Kaufmann, 1996, 168–175.

    Google Scholar 

  9. de Figueiredo, L. H., Stolfi, J., Adaptive Enumeration of Implicit Surfaces with Affine Arithmetic, Computer Graphics Forum, 1996, 15(5): 287–296.

    Google Scholar 

  10. Heidrich, W., Slusallek, P., Seidel, H. P., Sampling of Procedural Shaders using Affine Arithmetic, ACM Transaction on Graphics, 1998, 17(3): 158–176.

    Article  Google Scholar 

  11. Moore, R. E., Methods and Applications of Interval Analysis, Society for Industrial and Applied Mathematics, Philadelphia, 1979.

    Book  MATH  Google Scholar 

  12. Mudur, S. P., Koparkar, P A., Interval Methods for Processing Geometric Objects, IEEE Computer Graphics & Applications, 1984, 4(2): 7–17.

    Article  Google Scholar 

  13. Ratschek, H., Rokne, J., Computer Methods for the Range of Functions, Ellis Horwood Ltd., 1984.

    MATH  Google Scholar 

  14. Shou H., Martin R., Voiculescu I., Bowyer A., Wang G., Affine Arithmetic in Matrix Form for Algebraic Curve Drawing, Progress in Natural Science, 12 (1)77–81, 2002.

    MathSciNet  MATH  Google Scholar 

  15. Snyder, J. M., Interval Analysis for Computer Graphics, Computer Graphics (SIGGRAPH’92 Proceedings), 1992, 26(2): 121–130.

    Article  Google Scholar 

  16. Suffern, K. G., Quadtree Algorithms for Contouring Functions of Two Variables, The Computer Journal, 1990, 33: 402–407.

    Article  Google Scholar 

  17. Suffern, K. G., Fackerell, E. D., Interval Methods in Computer Graphics, Computer & Graphics, 1991, 15: 331–340.

    Article  Google Scholar 

  18. Voiculescu, I., Berchtold, J. Bowyer, A. Martin, R. R., Zhang, Q., Interval and Affine Arithmetic for Surface Location of Power- and Bernstein-form Polynomials, The Mathematics of Surfaces IX, Eds. Cipolla R. & Martin, R. R., Springer, 2000, 410-423.

    Chapter  Google Scholar 

  19. Zhang, Q., Martin, R. R., Polynomial Evaluation using Affine Arithmetic for Curve Drawing, Proceedings of Eurographics UK 2000, Eurographics UK, Abingdon, 2000, 49–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shou, H., Martin, R., Wang, G., Voiculescu, I., Bowyer, A. (2002). Affine Arithmetic and Bernstein Hull Methods for Algebraic Curve Drawing. In: Winkler, J., Niranjan, M. (eds) Uncertainty in Geometric Computations. The Springer International Series in Engineering and Computer Science, vol 704. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0813-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0813-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5252-5

  • Online ISBN: 978-1-4615-0813-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics