Skip to main content

Self-Propagating High-Temperature Centrifugal Processing of Cu2O-Cu-Al and Cu2O-Al Systems

  • Chapter
Processing by Centrifugation

Abstract

Solid-solid and gas-solid chemical reactions are being exploited for interesting and relatively new technological applications based on the so-called Self-propagating High-temperature Synthesis (SHS) technique. As schematically shown in Figure 1, this technique, which belongs to the more general category of Combustion Synthesis (CS), is characterized by the fact that once ignited, a relatively strong exothermic reaction is able to propagate as a combustion wave through the entire reacting mixture, without requiring any other energy supply. The main characteristics of the SHS technique are its simplicity, relatively low power requirements, high combustion temperature (up to 4000 K) and front propagation velocities up to about 25 cm per second, often permitting one to obtain final products with purity and mechanical properties better than those prepared by conventional methods.e.g., 1-7 This is because SHS processes are characterized by very high temperature gradients (about 105 K/cm) and large reaction rates, so that volatile impurities adsorbed on the reactants are eliminated (“self-cleaning”) during the reaction, thus leading to materials with high purity. Furthermore, the temperature gradients combined with rapid cooling may form metastable phases and unique structures not possible by conventional methods of furnace synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.G. Merzhanov and I.P. Borovinskaya, Self- propagating high-temperature synthesis of refractory inorganic connections, Dokl. Akad. Nauk 204: 366-369 (1972).

    CAS  Google Scholar 

  2. J.B. Holt, Combustion synthesis: a new area of research in materials science, in: Energy and Technology Review LLNL (January 1984) pp 11-20.

    Google Scholar 

  3. Z.A. Munir and U. Anselmi-Tamburini, Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion, Mater. Sci. Rept. 3: 277-365 (1989).

    Article  CAS  Google Scholar 

  4. A. Varma and J-P. Lebrat, Combustion synthesis of advanced materials, Chem. Engng. Sci. 47: 2179-2194(1992).

    Article  CAS  Google Scholar 

  5. A.G. Merzhanov, History and recent developments in SHS, Ceramics International 21: 371-379 (1995).

    Article  CAS  Google Scholar 

  6. V. Hlavacek and J.A. Puszynski, Chemical engineering aspects of advanced materials, Ind. Eng. Chem. Res. 35: 349-377(1996).

    Article  CAS  Google Scholar 

  7. A. Varma, A.S. Rogachev, A.S. Mukasyan, and S. Hwang, Combustion synthesis of advanced materials: principles and applications, Adv. Chem. Eng. 24: 79-226 (1998).

    Article  CAS  Google Scholar 

  8. R. Orrɉ, M. Sannia, A. Cincotti, and G. Cao, Treatment and recycling of zinc hydrometallurgical wastes, Chem. Engin. Sci. 54: 3053-3061 (1999).

    Article  Google Scholar 

  9. I.P. Borovinskaya, T.V. Barinova, V.I. Ratnikov, V.V. Zakorzhevsky, and T.I. Ignatjeva, Consolidation of radioactive wastes into mineral-like materials by the SHS method, Int. J. SHS 7: 129-135 (1998).

    CAS  Google Scholar 

  10. G. Cao, A. Doppiu, M. Monagheddu, R. Orrɉ, M. Sannia, and G. Cocco, The thermal and mechanochemical self-propagating degradation of chloro-organic compounds: the case of hexachlorobenzene over calcium hydride, Ind. Eng. Chem. Res. 38: 3218-3224 (1999).

    Article  CAS  Google Scholar 

  11. A. Feng and Z. A. Munir, The effect of an electric field on self-sustaining combustion synthesis: part ii. field-assisted synthesis of β-SiC, Metall. Mater. Trans. B 26B: 587-593 (1995).

    Article  CAS  Google Scholar 

  12. A.S. Mukasyan and I.P. Borovinskaya, Structure formation in SHS nitrides, Int. J. SHS. 1: 55 (1992).

    CAS  Google Scholar 

  13. S.A. Karataskov, V.I. Yukhvid and A.G. .Merzhanov, Regularities and mechanism of combustion of melting heterogeneous systems in a field of mass forces, Fizika gorenia i vzriva, no.6: 41-43 (1985)

    Google Scholar 

  14. A.G. Merzhanov and V.I. Yukhvid, The self- propagating high temperature synthesis in the field of centrifugal forces, in: Proceedings of the First US-Japanese Workshop on Combustion Synthesis, Tokyo, Japan (1990) pp 1-22.

    Google Scholar 

  15. A.S. Mukasyan, A. Pelekh, A. Varma, and A. Rogachev, Effects of gravity on combustion synthesis in heterogeneous gasless systems, AIAA Journal 35: 1821-1828 (1997).

    Article  CAS  Google Scholar 

  16. A.S. Shteinberg, V.A. Scherbakov, V.V. Martynov, M.A. Mukhoyan, and A.G. Merzhanov, Self-propagating high-temperature synthesis of high-porosity materials under zero-g conditions, Soviet Physics Doklady 36: 385-387 (1991) .

    Google Scholar 

  17. J.J. Moore, H.J. Feng, K.R. Hunter, and D.G. Wirth, Combustion synthesis of ceramic and metal-matrix composites, in: Proceedings of the 2nd International Microgravity Combustion Workshop, NASA CP 10113, Cleveland, OH (1992) pp 157-162.

    Google Scholar 

  18. O. Odawara, K. Mori, A. Tanji, and S. Yoda, Thermite reaction in a short microgravity environment, J. Mater. Synth. Proc. 1: 203-207 (1993).

    CAS  Google Scholar 

  19. K.R. Hunter and J.J. Moore, The effect of gravity on the combustion synthesis of ceramic and ceramic-metal composites, J. Mater. Synth. Proc. 2: 355-365 (1994).

    CAS  Google Scholar 

  20. S. Goroshin, J.H.S. Lee, and D.L. Frost, D.L., Combustion synthesis of ZnS in microgravity, in: 25 th International Symposium on Combustion, Combustion Institute, Pittsburgh, PA (1994) 1651-1657.

    Google Scholar 

  21. C.C. Lantz, P. A. Tefft, J..J. Moore, and D.W. Readey, Self propagating synthesis of ceramics in a microgravity environment, in: 7 th International Symposium on Experimental Methods for Microgravity Materials Science, R.A. Schiffman, ed., TMS Publication, Warrandale, PA (1995) 41-44.

    Google Scholar 

  22. O. Odawara, N. Kanamaru, T. Okutani, H. Nagai, Y. Nakata, and M. Suzuki, Combustion synthesis of GaP, InP, and (Ga,In)P under microgravity environment, Int. J. SHS 4: 117-122 (1995).

    CAS  Google Scholar 

  23. A. Mukasyan, A. Pelekh, and A. Varma, Combustion synthesis in gasless systems under microgravity conditions, J. Mater. Synth. Proc. 5: 391-400 (1997).

    CAS  Google Scholar 

  24. A.G. Merzhanov, A.S. Rogachev, V.N. Sanin, V.A. Scherbakov, A.E. Sytshev, and V.I. Yukhvid, Self-propagation high-temperature synthesis (SHS) under microgravity, J. Japan Society Microgravity Appl. 15: 550-555 Supplement II (1998).

    Google Scholar 

  25. A.G. Merzhanov, A.S. Rogachev, and A.E. Sytschev, SHS in space. First experiments, Dokl. Russ. Akad. Nauk 362: 217-221 (1998).

    CAS  Google Scholar 

  26. A.G. Merzhanov, V.N. Sanin, and V.I. Yukhvid, Peculiarities of structure formation of high caloric systems during combustion under microgravity, Dokl. Russ. Akad. Nauk 371: 94-97 (2000).

    Google Scholar 

  27. O. Odawara, Long ceramic-lined pipes produced by a centrifugal-thermite process, J. Amer. Ceram. Soc. 73:629-638(1990).

    Article  CAS  Google Scholar 

  28. A.R. Kachin and V.I. Yukhvid, SHS of cast composite materials and pipes in the field of centrifugal forces, Int. J. SHS 1: 168-171 (1992).

    CAS  Google Scholar 

  29. R. Orru, B. Simoncini, P. Virdis, and G. Cao, Further studies on a centrifugal SHS process for coating preparation and structure formation in thermite reactions, Inter. J. Self-Prop. High-Temp. Synth. N4: 137-147(1995).

    Google Scholar 

  30. V.I. Yukhvid, S.L. Silyakov, V.N. Sanin, and A.G. Merzhanov, The effect of gravity on SHS of foam materials, in: Proceedings of the Joint Xth European and With Russian Symposium on Physical Sciences in Microgravity (1997) pp 397-400.

    Google Scholar 

  31. L.L. Wang, Z. A. Munir, and J.B. Holt, The combustion synthesis of copper aluminides, Met. Trans. 21B: 567-577 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rogachev, A.S. et al. (2001). Self-Propagating High-Temperature Centrifugal Processing of Cu2O-Cu-Al and Cu2O-Al Systems. In: Regel, L.L., Wilcox, W.R. (eds) Processing by Centrifugation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0687-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0687-4_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5195-5

  • Online ISBN: 978-1-4615-0687-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics