Skip to main content

Landmarks, Localization, and the Use of Morphometrics in Phylogenetic Analysis

  • Chapter
Fossils, Phylogeny, and Form

Part of the book series: Topics in Geobiology ((TGBI,volume 19))

Abstract

Morphometries is the quantitative study of patterns of covariance with shape (Bookstein 1991). Since many morphological attributes of biological form are obviously reflections of evolutionary processes (e.g., Darwin 1859; Simpson 1944; Mayr 1963), and since assessments of patterns of morphological variation have been used traditionally to infer phylogenetic relations (e.g., Hennig 1966; Eldredge and Cracraft 1980; Mayr and Ashlock 1991) it would seem be natural to assume that morphometric analyses would play a large role in phylogenetic studies. This has not, however, been the case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrain, J.M., and Edgecombe, G.D. Silurian encrinurine trilobites from the central Canadian Arctic. Palaeontographica Canadiana 1997; 14:1–109.

    Google Scholar 

  • Blackith, R.E., and Reyment, R.A. Multivariate morphometrics. London: Academic Press, 1971.

    Google Scholar 

  • Bookstein, F.L. When one form is between two others: An application of biorthogonal analysis. American Zoologist 1980; 20:627–41.

    Google Scholar 

  • Bookstein, F.L. Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press, 1991.

    Google Scholar 

  • Bookstein, F.L. “Can biometrical shape be a homologous character?” In Homology: The Hierarchical Basis of Comparative Biology, B.K. Hall, ed. San Diego, CA: Academic Press, 1994.

    Google Scholar 

  • Bookstein, F.L. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology 1996; 58:313–365.

    Article  Google Scholar 

  • Bookstein, F.L. Landmark methods for forms without landmarks: localizing group differences in outline shape. medical Image Analysis 1997; 1:225–243.

    Article  Google Scholar 

  • Bookstein, F., Chernoff, B., Elder, R., Humphries, J., Smith, G., and Strauss, R. Morphometrics in evolutionary biology. Philadelphia: The Academy of Natural Sciences of Philadelphia, 1985.

    Google Scholar 

  • Chatfield, C., and Collins, A.J. Introduction to multivariate analysis. London: Chapman and Hall, 1980.

    Google Scholar 

  • Christopher, R.A., and Waters, J.A. Fourier analysis as a quantitative descriptor of miosphere shape. Journal of Paleontology 1974; 48:697–709.

    Google Scholar 

  • Cranston, P.S., and Humphries, C.J. Cladistics and computers: a chironomid conundrum. Cladistics 1988; 4:72–92.

    Article  Google Scholar 

  • Darwin, C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray, 1859.

    Google Scholar 

  • Eldredge, N., and Cracraft, J. Phylogenetic patterns and the evolutionary process. New York: Columbia University Press, 1980.

    Google Scholar 

  • Falconer, D.S. Introduction to quantitative genetics. London: Longman, 1981.

    Google Scholar 

  • Felsenstein, J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum-likelihood estimates. Evolution 1981; 35:1229–42.

    Article  Google Scholar 

  • Fink, W.L., and Zelditch, M.L. Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the Piranha genus Pygocentrus. Systematic Biology 1995; 44:343–360.

    Google Scholar 

  • Hennig, W. Phylogenetic systematics. Urbana: University of Illinois Press, 1966.

    Google Scholar 

  • Hull, D.L. Science as a process: an evolutionary account of the social and conceptual developments in science. Chicago: University of Chicago Press, 1988.

    Google Scholar 

  • Jöreskog, K.G., Klovan, J.E., and Reyment, R.A. Geological factor analysis. Amsterdam: Elsevier, 1976.

    Google Scholar 

  • Kendall, D.G. Shape manifolds, procrustean metrics and complex projective spaces. Bulletin of the London Mathematical Society 1984; 16:81–121.

    Article  Google Scholar 

  • Lele, S., and Richtsmeier, J.T. Euclidean Distant Matrix Analysis: a coordinate free approach for comparing biological shapes using landmark data. American Journal of Physical Anthropology 1991; 86:415–27.

    Article  Google Scholar 

  • Lestrel, P.E. Fourier descriptors and their applications in biology. Cambridge: Cambridge University Press, 1997.

    Book  Google Scholar 

  • Lohmann, G.P. Eigenshape analysis of microfossils: A general morphometric method for describing changes in shape. Mathematical Geology 1983; 15:659–672.

    Article  Google Scholar 

  • Lynch, J.M., Wood, C.G., Luboga, S.A. Geometric morphometries in primatology: craniofacial variation in Homo sapiens and Pan troglodytes. Folia Primatologia 1996; 67:15–39.

    Google Scholar 

  • MacLeod, N. Lower and Middle Jurassic Perispyridium (Radiolaria) from the Snowshoe Formation, east-central Oregon. Micropaleontology 1988; 34:289–315.

    Article  Google Scholar 

  • MacLeod, N. Testing morphometric data for phylogenetic and functional covariance. Journal of Vertebrate Paleontology, Abstracts of Papers 1995; 15 (Supplement to No. 3):41A–42A.

    Google Scholar 

  • MacLeod, N. Generalizing and extending the eigenshape method of shape visualization and analysis. Paleobiology 1999; 25:107–138.

    Google Scholar 

  • MacLeod, N., and Rose, K.D. Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. American Journal of Science 1993; 293-A:300–355.

    Article  Google Scholar 

  • Maddison, W.P. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 1991; 40:304–14.

    Article  Google Scholar 

  • Mayr, E. Animal species and evolution. Cambridge: Belknap Press, 1963.

    Google Scholar 

  • Mayr, E. The growth of biological thought: diversity, evolution, and inheritance. Cambridge: Harvard University Press, 1982.

    Google Scholar 

  • Mayr, E., and Ashlock, P.D. Principles of systematic zoology. New York: McGraw-Hill, 1991.

    Google Scholar 

  • Naylor, G.J.P. Can partial warps scores be used as cladistic characters? In Advances in morphometries, L.F. Marcus, M. Corti, A. Loy, G.J.P. Naylor, and D.E. Slice, eds. New York: Plenum Press, 1996.

    Google Scholar 

  • Patterson, C. Morphological characters and homology. In Problems of phylogenetic reconstruction, K.A. Joysey, and A.E. Friday, eds. London and New York: Academic Press, 1982.

    Google Scholar 

  • Pessagno, E.A., Jr., and Blome, C.D. Bizarre nassellariina (Radiolaria) from the Middle and Upper Jurassic of North America. Micropaleontology 1982; 28:289–318.

    Article  Google Scholar 

  • Pimentel, R.A, and Riggins, R. The nature of cladistic data. Cladistics 1987; 3:201–209.

    Article  Google Scholar 

  • Reippel, O. Homology, a deductive concept. Zeitschrift für Zoolgische, Systemaik und Evolutionforschung 1980; 18:315–319.

    Article  Google Scholar 

  • Reyment, R.A., Blackith, R.E., and Campbell, N.A. Multivariate morphometries, second edition. London: Academic Press, 1984.

    Google Scholar 

  • Reyment, R.A., and Joreskog, K.G. Applied factor analysis in the natural sciences. Cambridge: Cambridge University Press, 1993.

    Book  Google Scholar 

  • Rohlf, F.J. Relationships among eigenshape analysis, Fourier analysis, and analysis of coordinates. Mathematical Geology 1986; 18:845–57.

    Article  Google Scholar 

  • Rohlf, F.J. Relative warp analysis and an example of its application to mosquito wings. In Contributions to morphometrics, L.F. Marcus, E. Bello, and A. García-Valdecasas, eds. Madrid, Museo Nacional de Ciencias Naturales 8, 1993.

    Google Scholar 

  • Rohlf, F.J. On applications of geometric morphometries to studies of ontogeny and phylogeny. Systematic Biology 1998; 47:147–158.

    Article  Google Scholar 

  • Simpson, G.G. Tempo and mode in evolution. New York: Columbia University Press, 1944.

    Google Scholar 

  • Sneath, P.H.A, and Sokal, R.R. Numerical taxonomy: the principles and practice of numerical classification. San Francisco: W. H. Freeman, 1973.

    Google Scholar 

  • Sokal, R.R., and Sneath, P.A. Principles of numerical taxonomy. San Francisco: W.H. Freeman, 1963.

    Google Scholar 

  • Strauss, R.E., and Bookstein, F.L. The truss: body form reconstruction in morphometries. Systematic Zoology 1982; 31:113–135.

    Article  Google Scholar 

  • Swiderski, D.L., Zelditch, M.L., Fink, W.L. Why morphometries is not special: coding quantitative data for phylogenetic analysis. Systematic Biology 1998; 47:508–19.

    Google Scholar 

  • Thompson, D.W. On growth and form. Cambridge: Cambridge University Press, 1917.

    Google Scholar 

  • Wagner, G.P. Homology and the mechanisms of development. In Homology: the hierarchical basis of comparative biology, B.K. Hall, ed. San Diego: Academic Press, 1994.

    Google Scholar 

  • Zelditch, M.L., Bookstein, F.L., and Lundrigan, B.L. Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution 1992; 46:1164–1180.

    Article  Google Scholar 

  • Zelditch, M.L., Bookstein, F.L., and Lundrigan, B.L. The ontogenetic complexity of developmental constraints. Journal of Evolutionary Biology 1993; 62:121–141.

    Google Scholar 

  • Zelditch, M.L., and Fink, W.L. Allometry and developmental integration of body growth in a piranha Pygocentrus nattereri (Teleosti: Ostariophysi). Journal of Morphology 1995; 223:341–355.

    Article  Google Scholar 

  • Zelditch, M.L., Fink, W.L., and Swiderski, D.L. Morphometries, homology, and phylogenetics: quantified characters as synapomorphies. Systematic Biology 1995; 44:179–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacLeod, N. (2001). Landmarks, Localization, and the Use of Morphometrics in Phylogenetic Analysis. In: Adrain, J.M., Edgecombe, G.D., Lieberman, B.S. (eds) Fossils, Phylogeny, and Form. Topics in Geobiology, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0571-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0571-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5137-5

  • Online ISBN: 978-1-4615-0571-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics