Skip to main content

Synthesis for Mechanical Behavior

  • Chapter
Optimal Synthesis Methods for MEMS

Part of the book series: Microsystems ((MICT,volume 13))

Synopsis

The mechanical elements of most of the MEMS devices are based on compliant designs such as the ones found in beams, plates, and other types of elastic structures. The advantages of single-piece, assembly-free compliant designs are well known. The extruded planar geometry of MEMS devices and almost unrestricted possibilities for shapes in the plane parallel to the substrate make it possible to develop systematic synthesis methods. This chapter describes such methods for desired mechanical attributes including stiffness, flexibility, motion, strength, natural frequencies, and normal mode shapes. Topology optimization is the main focus of the chapter but some other methods are also briefly presented. Some applications are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elwenspoek, M. and Jansen, H.V., Silicon Micromachining, Cambridge University Press, 1998, Cambridge, UK.

    Google Scholar 

  2. Petersen, K.E., “Silicon as a Mechanical Material,” Proceedings of the IEEE, Vol. 70, No. 5, 1982, pp. 420–457.

    Article  Google Scholar 

  3. Fan, L.-S., Tai, Y.C., and Muller, R.S., “Movable Micromechanical Structures for Sensors and Actuators,” IEEE Transactions on Electron Devices, Vol. 35, 1988, pp. 724.

    Article  Google Scholar 

  4. Behi, F., Mehregany, M., and Gabriel, K.G.,” Microfabricated Three-Degree-of-Freedom Parallel Mechanism,” Proceedings of the IEEE workshop on MEMS, 1990, p. 159.

    Google Scholar 

  5. Midha, A., “Elastic Mechanisms” in Modern Kinematics in the Last 40 Years (A. G. Erdman, ed.), 1992, John Wiley and Sons, Inc., New York.

    Google Scholar 

  6. Ananthasuresh, G.K., Kota, S. and Gianchandani, Y., “Systematic Synthesis of Microcompliant Mechanisms- Preliminary Results,” Proceedings of the National Applied Mechanisms and Robotics Conference, Paper 82, Cincinnati, OH, Nov. 8–10, 1993, pp. 82.1–82.6

    Google Scholar 

  7. Ananthasuresh, G.K.; Kota, S., “Designing Compliant Mechanisms”, Mechanical Engineering 1995, Vol. 117, No. 11, November, 1995, pp. 93–96.

    Google Scholar 

  8. Howell, L. L., Compliant Mechanisms, John Wiley and Sons, Inc., New York, 2001.

    Google Scholar 

  9. Roark, R.J. and Young, W.C., Roark’s Formulas for Stress and Strain, 7th edition, McGraw-Hill, New York.

    Google Scholar 

  10. Cho, Y.-H. and A. P. Pisano, “Optimum Structural Design of Micromechanical Crab-Leg Flexures with Microfabrication Constraints,” Proc. ASME, DSC-v. 19, Microstructures, Sensors and Actuators, pp. 31–50, ASME Winter Annual Meeting, Nov. 1990.

    Google Scholar 

  11. Tang, W.C., Nguyen, T.-C. H., Judy, M. W., and Howe, R. T. “Electrostatic Comb Drive of Lateral Polysilicon Resonators,” Sensors and Actuators A, 21 (1990) 328–31.

    Article  Google Scholar 

  12. Fedder, G.K., Simulation of Microelectromechanical Systems, Ph.D. Thesis, University of California at Berkeley, September 1994.

    Google Scholar 

  13. Saggere, L., Kota, S., and Crary, S. D., “A New Design for Suspension of Linear Microactuators,” Proc. of the 1994 International Mechanical Engineering Congress and Exposition: Dynamic Systems and Control, Chicago.

    Google Scholar 

  14. Erdman, A.G. and Sandor, G.N., Kota, S., Mechanism Design: Analysis and Synthesis, Vol. 1, Fourth Edition, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  15. Xu, D. and Ananthasuresh, G.K., “Skeletal Shape Optimization of Compliant Mechanisms”, ASME Journal of Mechanical Design. To appear in 2003 (Vol. 125, No. 2).

    Google Scholar 

  16. Hetrick, J. A. and Kota, S., 1999, “An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms”, ASME Journal of Mechanical Design, Vol.121 pp 229–234.

    Article  Google Scholar 

  17. Kota S., Hetrick J., Li Z., Rodgers S., Krygowski T., “Synthesizing High-Performance Compliant Stroke Amplification Systems for MEMS,” Proc. of the Thirteenth Annual International Confernece on Micro Electro Mechanical Systems, Miyazaki, Japan, Jan. 2000.

    Google Scholar 

  18. Bendsøe, M.P. and Sigmund, O., “Material Interpolation Schemes in Topology Optimization,” Archives in Applied Mechanics, Vol. 69, (9–10), 1999, pp. 635–654.

    Google Scholar 

  19. Yin, L. and Ananthasuresh, G.K., “Topology Optimization of Compliant Mechanisms with Multiple Materials Using a Peak Function Material Interpolation Scheme,” Structural and Multidisciplinary Optimization, Vol. 23, No. 1, 2001, pp. 49–62.

    Article  Google Scholar 

  20. Cheng, G.D., Guo, X., “ε-Relaxation Approach in Structural Optimization,” Structural Optimization, Vol. 13, 1997, pp. 258–266.

    Article  Google Scholar 

  21. Duysinx, P., and Bendsøe, M.P., “Topology optimization of continuum structures with local stress constraints,” International Journal for Numerical Methods in Engineering, Vol. 43, 1998, pp. 1453–1478.

    Article  MathSciNet  MATH  Google Scholar 

  22. Saxena, A.; Ananthasuresh, G. K., “Topology Design of Compliant Mechanisms with Strength Considerations,” Mechanics of Structures and Mechanisms, 2001, 29(2), pp. 199–221.

    Article  Google Scholar 

  23. Ananthasuresh, G. K., Kota, S., and Kikuchi, N., “Strategies for Systematic Synthesis of Compliant MEMS,” Proc. 1994 ASME Winter Annual Meeting, Symposium on MEMS, Dynamics Systems and Control, DSC-Vol. 55–2, Chicago, IL, Nov. 1994, pp. 677–686.

    Google Scholar 

  24. Ananthasuresh, G. K., “Investigations on the Synthesis of Compliant Mechanisms and a New Design Paradigm for Micro-Electro-Mechanical Systems,” PhD Dissertation, 1994, The University of Michigan, Ann Arbor, MI.

    Google Scholar 

  25. Sigmund, O., “On the Design of Compliant Mechanisms Using Topology Optimization,” Mechanics of Structures and Machines, 1997, 25 (4), pp. 495–526.

    Article  Google Scholar 

  26. Frecker, M.I., Ananthasuresh, G.K., Nishiwaki, N., Kikuchi, N., Kota, S., “Topological synthesis of compliant mechanisms using multicriteria optimization/” ASME J. Mech. Design, Vol. 119, 1997, pp.238–245.

    Article  Google Scholar 

  27. Nishiwaki, S.; Frecker, M.I.; Min, S.; Kikuchi, N., “Topology Optimization of Compliant Mechanisms Using the Homogenization Method,” International Journal of Numerical Methods in Engineering, 1998, 42, pp. 535–559.

    Article  MathSciNet  MATH  Google Scholar 

  28. Frecker, M., Kikuchi, N., and Kota, S., “Topology Optimization of Compliant Mechanisms With Multiple Outputs,” Structural and Multidisciplinary Optimization Vol 17, 1998, pp 269–278.

    Google Scholar 

  29. Saggere, L. and Kota, S., “Static Shape Control of Smart Structures Using Compliant Mechanisms,” AIAA Journal, 37(5), 1999, pp.572–578.

    Article  Google Scholar 

  30. Saxena, A., Ananthasuresh, G.K., “On an optimal property of compliant topologies,” Structural and Multidisciplinary Optimization, Vol. 19, 2000, pp, 36–49.

    Article  Google Scholar 

  31. Bruns, T.E. and Tortorelli, D.A., “Topology Optimization of Nonlinear Elastic Structures and Compliant Mechanisms,” Computer Methods in Applied Mechanics and Engineering, Vol. 190, 2001, pp. 3443–3459.

    Article  MATH  Google Scholar 

  32. Saxena, A. and Ananthasuresh, G.K., “Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications,” Journal of Mechanical Design, 2001, 123, pp. 33–42.

    Article  Google Scholar 

  33. Pedersen, C.B.W.; Buhl, T.; Sigmund, O., “Topology Synthesis of Large-Displacement Compliant Mechanisms,” International Journal for Numerical Methods in Engineering, 2001, 50, pp. 2683–2705.

    Article  MATH  Google Scholar 

  34. Lau, G.K., Du, H., and Lim, M.K., “Use of Functional Specifications as Objective Functions in Topology Optimization of Compliant Mechanisms,” Computer Methods and in Applied Mechanics and Engineering, Vol. 190, 2001, pp. 4421–4433.

    Article  Google Scholar 

  35. Joo, J.-Y., Kota, S., and Kikuchi, N., “Optimal Topology Design of Compliant Mechanisms Using Frame Elements,” Mechanics and Structures of Machines, 2002.

    Google Scholar 

  36. Bendsoe, M.P. and Sigmund, O., Topology Optimization: Theory, Methods and Applications, 2003, Springer, New York.

    Google Scholar 

  37. Shield, R.T., Prager, W., “Optimal structural design for given deflection,” Journal of Applied Mathematics and Physics. ZAMP, Vol. 21, 1970, pp. 513–523.

    Article  MATH  Google Scholar 

  38. Przemieniecki, J.S., Theory of Matrix Structural Analysis, Dover Publications, New York, 1968.

    MATH  Google Scholar 

  39. Mac Donald, G. A., “Review of Low Cost Accelerometers for Vehicle Dynamics,” Sensors and Actoators, A 21- A 23, 1990.

    Google Scholar 

  40. Roylance, L. M. and Angell, J. B., “A Batch-Fabricated Silicon Accelerometer,” IEEE Trans. Electron Devices, Vol ED-26, No. 12, 1979, pp. 1911–1917.

    Article  Google Scholar 

  41. Samuels, H., “Single- and Dual-Axis Micromachined Acceletometers,” Analog Dialog, Vol 30, No 4(1), 1993.

    Google Scholar 

  42. Lemaire, C., “Accelerometers in Earthquake Detection Systems,” Accelerometer News, Vol 6, 1998.

    Google Scholar 

  43. Norton, R.L., Machine Design—An Integrated Approach, 1996, Prentice-Hall, Upper Saddle River, New Jersey, U.S.A.

    Google Scholar 

  44. Chu, M., “Inverse Eigenvalue Problems,” SIAM Review, 40(1), 1992, pp. 1–39.

    Article  Google Scholar 

  45. Diaz, A.R. and Kikuchi, N., “Solution to Shape and Topology Eigenvaue Optimization Problems Using a Homogenization Method,” International Journal for Numerical Methods in Engineering, Vol. 35, 1992, pp. 1487–1502.

    Article  MathSciNet  MATH  Google Scholar 

  46. Ma, Z.-D., Kikuchi, N., and Cheng, H.-C., “Topological Design for Vibrating Structures,” Computer Methods in Applied Mechanics and Engineering, Vol. 121 (1–4), 1995, pp. 259–280.

    Article  MathSciNet  MATH  Google Scholar 

  47. Tcherniak, D., “Topology Optimization of Resonating Structures Using SIMP Method,” International Journal of Numerical Methods in Engineering, Vol. 54, No. 11, 2002, pp. 1605–1622.

    Article  MATH  Google Scholar 

  48. Brand, O. and Baltes, H., “Micromachined Resonant Sensors—An Overview,” Sensors Update, Vol. 4, H. Baltes, W. Gopel, and J. Hesse, Eds., 1996, VCH, New York, pp. 1–51.

    Google Scholar 

  49. Albrecht, T., Grutter, P., Horne, D., and Rugar, D., “Frequency Modulation Detection Using High-Q Cantilevers for Enhanced Force Microscope Sensitivity,” Journal of Applied Physics, Vol. 69, No. 2, 1991, pp. 668–673.

    Article  Google Scholar 

  50. Seshia, A.A., “Integrated Micromechanical resonant Sensors for Inertial Measurement Systems,” Ph.D. Thesis, 2002, University of California, Berkeley, U.S.A.

    Google Scholar 

  51. Seyranian, A.P., “Sensitivity Analysis of Multiple Eigenvalues,” Mechanics of Structures and Machines, Vol. 21, 1993, pp. 261–284.

    Article  MathSciNet  Google Scholar 

  52. Gladwell, G.M.L., Inverse Problem in Vibration, 1986, Dordrecht: Martinus Nijhoff.

    Book  Google Scholar 

  53. Putty, M.W. and Najafi, K., “A Micromachined Vibrating Ring Gyroscope,” 1994 Technical Digest, Sensors and Actuators Workshop, Hilton Head Islands, SC, June 13–16, 213–220.

    Google Scholar 

  54. Pedersen, N., “Design of Cantilever Probes for Atomic Force Microscopy (AFM),” Engineering Optimization, Vol. 32, No. 3, 2000, 373–392.

    Article  Google Scholar 

  55. McIsaac, K.A. and Ostrowski, J.P., “Motion planning for dynamic eel-like robots,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol 2, 2000, pp. 1695–1700.

    Google Scholar 

  56. Ram, Y.M. and Gladwell, G.M.L., “Constructing a Finite Element Model of a Vibratory Rod from Eigendata,” Journal of Sound and Vibration, Vol. 169, 1994, pp. 229–237.

    Article  MATH  Google Scholar 

  57. G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. Hagan, A. K. Chakraborty, A. Majumdar, “Origin of Nanomechanical Cantilever Motion Generated from Biomolecular Interactions,” Proc. National Acad. Science, Vol. 98, pp. 1560–1564 (2001).

    Article  Google Scholar 

  58. Lai, E. and Ananthasuresh, G.K., “On the Design of Bars and Beams for Desired Mode Shapes,” Journal of Sound and Vibration, Vol. 254, No. 2, 2002, pp. 393–406.

    Article  Google Scholar 

  59. Ram, Y.M., “Inverse Mode Problems for the Discrete Model of a Vibrating Beam,” Journal of Sound and Vibration, Vol. 169, 1994, pp. 239–252.

    Article  MATH  Google Scholar 

  60. Harley, J.A., Stowe, T.D., Kenny, T.W., “Piezoresistive Cantilevers with FemtoNewton Force Resolution,” Proceedings of the 10 th International Conference on Solid-State Sensors and Actuators, Sendai, Japan, Vol. 2, pp. 1628–1631.

    Google Scholar 

  61. Ou, J.S. and Kikuchi, N., “Integrated Optimal Structural and Vibration Control Design,” Structural Optimization, Vol. 12, No. 4, 1996, pp. 209–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saxena, A., Ananthasuresh, G.K. (2003). Synthesis for Mechanical Behavior. In: Optimal Synthesis Methods for MEMS. Microsystems, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0487-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0487-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5101-6

  • Online ISBN: 978-1-4615-0487-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics