Skip to main content

Molecular Pharmacology and Structure-Function Analysis of PACAP/Vip Receptors

  • Chapter
Pituitary Adenylate Cyclase-Activating Polypeptide

Part of the book series: Endocrine Updates ((ENDO,volume 20))

Abstract

PACAP (Arimura and Shioda, 1995; Vaudry et al, 2000) and VIP (Said, 1986; Laburthe et al, 1999) are two prominent neuropeptides which have wide distribution in peripheral and central nervous systems and large spectrum of biological actions. The 28-aminoacid peptide VIP was discovered in 1970 (Said and Mutt, 1970) and VIP receptors were shortly described in the seventies (Laburthe et al, 1993; for review). PACAP was isolated much later in 1989 (Miyata et al, 1989) as a 38-aminoacid peptide but a shorter form PACAP27 (Miyata et al, 1990) is also present in various tissues (Arimura and Shioda, 1995; Vaudry et al, 2000). The sequence of PACAP27 shows 68% identity with that of VIP in humans. Therefore, VIP and PACAP are the most closely related peptides in terms of structure and function in the so-called VIP-secretin family of structurally related peptides that comprises secretin, glucagon and glucagon-like peptides I and II, peptide histidine isoleucineamide (PHI), helodermin, growth hormone-releasing factor (GRF) and gastric inhibitory polypeptide (GIP) (Laburthe et al, 1993). Soon after the discovery of PACAP, it was shown that PACAP was able to bind with high affinity to the classical VIP receptors (Shivers et al, 1991) and also had a specific receptor for which VIP has a very low affinity (Buscail et al, 1990; Gottschall et al, 1990). The rapid development of receptor cloning in the nineties provided evidence for three receptor subtypes for PACAP: the so-called VPAC1, VPAC2 and PAC1 receptors (see below). In this context, the present chapter reviews the data regarding the molecular pharmacology and structure-function relationship of PACAP receptors including VPAC1, VPAC2 and PAC1 with special emphasis on receptors from humans and rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamou JE, Aiyar N, Van Horn S, Elshourbagy NA. Cloning and functional characterization of the human vasoactive intestinal peptide (VIP)-2 receptor. Biochem Biophys Res Commun 1995;209:385–392.

    Article  PubMed  CAS  Google Scholar 

  • Amiranoff B, Vauclin-Jacques N, Boige N, Rouyer-Fessard C, Laburthe M. Interaction of Gila monster venom with VIP receptors in intestinal epithelium of human. A comparison with rat. FEBS Lett 1983;164:299–302.

    Article  PubMed  CAS  Google Scholar 

  • Arimura A, Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: Neuroendocrine and endocrine interaction. Front Neuroendocrinol 1995;16:53–88.

    Article  PubMed  CAS  Google Scholar 

  • Bataille D, Freychet P, Rosselin G. Interaction of glucagon, gut glucagon, vasoactive intestinal polypeptide and secretin with liver and fat cell plasma membranes: Binding to specific sites and stimulation of adenylate cyclase. Endocrinology 1974;95:713–721.

    CAS  Google Scholar 

  • Bataille D, Gespach C, Laburthe M, Amiranoff B, Tatemoto K, Vauclin N, Rosselin G. Porcine peptide having N-terminal histidine and C-terminal isoleucineamide: VIP-like and secretin-like effects in different tissues from rat. FEBS Lett 1980;114:240–242.

    Article  PubMed  CAS  Google Scholar 

  • Buscail L, Gourlet P, Cauvin A, De Neef P, Gossen D, Arimura A, Miyata A, Coy DH, Robberecht P, Christophe J. Presence of highly selective receptors for PACAP (pituitary adenylate cyclse-activating peptide) im membranes from the rat pancreatic acinar cell line AR 4–2J. FEBS Lett 1990;262:4–2.

    Article  PubMed  CAS  Google Scholar 

  • Cao YJ, Gimpl G, Fahrenholz F. Molecular structure analysis of the pituitary adenylate cyclase activating polypeptide type I receptor from pig brain. Biochim Biophys Acta 1994;1222:432–440.

    Article  PubMed  CAS  Google Scholar 

  • Cao YJ, Gimpl G, Fahrenholz F. The amino-terminal fragment of the adenylate cyclase activating polypeptide (PACAP) receptor functions as a high affinity PACAP binding domain. Biochem Biophys Res Commun 1995;212:673–680.

    Article  PubMed  CAS  Google Scholar 

  • Cao YJ, Kojro E, Gimpl G, Jasionowski M, Kasprzykowski F, Lankiewicz L, Fahrenholz F. Photoaffinity labeling analysis of the interaction of pituitary adenylate-cyclase-activating polypeptide (PACAP) with the PACAP type I receptor. Eur J Biochem 1997;244:400–406.

    Article  PubMed  CAS  Google Scholar 

  • Cao YJ, Gimpl G, Fahrenholz F. A mutation in the second intracellular loop of the pituitary adenylate cyclase activating polypeptide type I receptor confers constitutive receptor activation. FEBS Lett 2000;469:142–146.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee TK, Sharma RV, Fisher RA. Molecular cloning of a novel variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor that stimulates calcium influx by activation of L-type calcium channels. J Biol Chem 1996;271:32226–32232.

    Article  PubMed  CAS  Google Scholar 

  • Christophe J, Conlon TP, Gardner JD. Interaction of porcine vasoactive intestinal peptide with dispersed pancreatic acinar cells from guinea pig. J Biol Chem 1976;251:4629–4634.

    PubMed  CAS  Google Scholar 

  • Christophe J. Type I receptors for PACAP. Biochim Biophys Acta 1993;1154:183–199.

    Article  PubMed  CAS  Google Scholar 

  • Cauvin A, Buscail L, Gourlet P, De Neef P, Gossen D, Arimura A, Miyata A, Coy DH, Robberecht P, Christophe J. The novel VIP-like hypothalamic polypeptide PACAP interacts with high affinity receptors in the human neuroblastoma cell line NB-OK. Peptides 1990;11:773–777.

    Article  PubMed  CAS  Google Scholar 

  • Cook JS, Wolsing DH, Lameh J, Olson CA, Correa PE, Sadee W, Blumenthal EM, Rosenbaum JS. Characterization of a RDC1 gene which encodes the canine homolog of a proposed human VIP receptor. Expression does not correlate with an increase in VIP binding sites. FEBS Lett 1992;300:149–152.

    Article  PubMed  CAS  Google Scholar 

  • Couvineau A, Amiranoff B, Laburthe M. Solubilization of the liver vasoactive intestinal peptide receptor. Hydrodynamic characterization and evidence for an association with a functional GTP regulatory protein. J Biol Chem 1986; 261:14482–14489.

    PubMed  CAS  Google Scholar 

  • Couvineau A, Voisin T, Laburthe M. Purification of VIP receptor from porcine liver by a newly designed one-step affinity chromatography. J Biol Chem 1990;265:13386–13390.

    PubMed  CAS  Google Scholar 

  • Couvineau A, Rouyer-Fessard C, Darmoul D, Maoret JJ, Carrero I, Ogier-Denis E, Laburthe M. Human intestinal VIP receptor: Cloning and functional expression of two cDNA encoding proteins with different N-terminal domains. Biochem Biophys Res Commun 1994;20:769–776.

    Article  Google Scholar 

  • Couvineau A, Gaudin P, Maoret JJ, Rouyer-Fessard C, Nicole P, Laburthe M. Highly conserved aspartate 68, tryptophane 73 and glycine 109 in the N-terminal extracellular domain of the human VIP receptor are essential for its ability to bind VIP. Biochem Biophys Res Commun 1995;206:246–252.

    Article  PubMed  CAS  Google Scholar 

  • Couvineau A, Rouyer-Fessard C, Maoret JJ, Gaudin P, Nicole P, Laburthe M. Vasoactive intestinal peptide (VIP) 1 receptor. Three nonadjacent amino acids are responsible for species selectivity wit respect to recognition of peptide histidine isoleucineamide. J Biol Chem 1996a;271:12795–12800.

    Article  CAS  Google Scholar 

  • Couvineau A, Fabre C, Gaudin P, Maoret JJ, Laburthe M. Mutagenesis of N-glycosylation sites in the human vasoactive intestinal peptide 1 receptor. Evidence that asparagine 58 or 69 is crucial for correct delivery of the receptor to plasma membrane. Biochemistry 1996b;35:1745–1752.

    Article  CAS  Google Scholar 

  • Couvineau A, Lacapere JJ, Rouyer-Fessard C, Laburthe M. Role of K322 and E394 residues in coupling of human VPAC1 receptor to adenylyl cyclase. In: Proceedings of the 5th international symposium on VIP, PACAP and related peptides 2001; in press.

    Google Scholar 

  • Daniel PB, Kieffer TJ, Leech CA, Habener JF. Novel alternatively spliced exon in the extracellular ligand-binding domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) selectively increases ligand affinity and alters signal transduction coupling during spermatogenesis. J Biol Chem 2001;276:12938–12944.

    Article  PubMed  CAS  Google Scholar 

  • Dautzenberg FM, Mevenkamp G, Wille S, Hauger RL. N-terminal splice variants of the type I PACAP receptor: isolation, characterization and ligand binding/selectivity determinants. J Neuroendocrinol 1999;11:941–949.

    Article  PubMed  CAS  Google Scholar 

  • Desbuquois B. The interaction of vasoactive intestinal polypeptide and secretin with liver membranes. Eur J Biochem 1974;46:439–450.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson T, Fleetwood-Walker SM, Mitchell R, Lutz EM. Evidence for roles of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) receptors in modulating the responses of rat dorsal horn neurons to sensory inputs. Neuropeptides 1997;31:175–185.

    Article  PubMed  CAS  Google Scholar 

  • Du K, Nicole P, Couvineau A, Laburthe M. Aspartate 196 in the first extracellular loop of the human VIP1 receptor is essential for VIP binding and VIP-stimulated cAMP production. Biochem Biophys Res Commun 1997;230:289–292.

    Article  PubMed  CAS  Google Scholar 

  • Du K, Nicole P, Couvineau A, Laburthe M. Construction of chimeras between human VIP1 and secretin receptors: identification of receptor domains involved in selectivity towards VIP, secretin, and PACAP. Ann N Y Acad Sci 1998;865:386–389.

    Article  PubMed  CAS  Google Scholar 

  • Ekblad E. Pharmacological evidence for bothy neuronal and smooth muscle PAC] receptors and a VIP-specific receptor in rat colon. Regul Pept 1999;85:87–92.

    Article  PubMed  CAS  Google Scholar 

  • Fabre C, El Battari A, Karamanos Y, Couvineau A, Salomon R, Laburthe M, Marvaldi J, Pichon J, Luis J. Glycosylation of VIP receptors: a molecular basis for receptor heterogeneity. Peptides 1993;14:483–489.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin P, Couvineau A, Maoret JJ, Rouyer-Fessard C, Laburthe M. Mutational analysis of cysteine residues within the extracellular domains of the human vasoactive intestinal peptide (VIP) 1 receptor identifies seven mutants that are defective in VIP binding. Biochem Biophys Res Commun 1995;211:901–908.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin P, Couvineau A, Maoret JJ, Rouyer-Fessard C, Laburthe M. Stable expression of the recombinant human VIP receptor in clonal Chinese hamster cells. Eur J Pharmacol 1996;302:207–214.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin P, Maoret JJ, Couvineau A, Rouyer-Fessard C, Laburthe M. Constitutive activation of the human vasoactive intestinal peptide 1 receptor, a member of the new class II family of G protein-coupled receptors. J Biol Chem 1998;273:4990–4996.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin P, Couvineau A, Rouyer-Fessard C, Maoret JJ, Laburthe M. The human vasoactive intestinal Peptide/Pituitary adenylate cyclase activating peptide receptor 1 (VPAC1): constitutive activation by mutations at threonine 343. Biochem Biophys Res Commun. 1999;254:15–20.

    Article  PubMed  CAS  Google Scholar 

  • Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev. 2000;21:90–113.

    Article  PubMed  CAS  Google Scholar 

  • Gottschall PE, Tatsuno I, Miyata A, Arimura A. Characterization and distribution of binding sites for the hypothalamic peptide, pituitary adenylate cycloase-activating polypeptide. Endocrinology 1990;127:272–277.

    Article  PubMed  CAS  Google Scholar 

  • Gourlet P, Vandermeers A, Vandermeers-Piret MC, Rathe J, De Neef P, Robberecht P. C-terminally shortened pituitary adenylate cyclase-activating peptides (PACAP) discriminate PACAP I, PACAP II-VIP1 and PACAP II-VIP2 recombinant receptors. Regul Pept 1996a;62:125–130.

    Article  CAS  Google Scholar 

  • Gourlet P, Vilardaga JP, De Neef P, Waelbroeck M, Vandermeers A, Robberecht P. The C-terminus ends of secretin and VIP interact with the N-terminal domains of their receptors. Peptides 1996b;17:825–829.

    Article  CAS  Google Scholar 

  • Gourlet P, Vandermeers A, Vertongen P, Rathe J, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. Development of high affinity selective VIP1 receptor agonists. Peptides 1997a;18:1539–1545.

    Article  CAS  Google Scholar 

  • Gourlet P, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. In vitro properties of a high affinity selective antagonist of the VIP1 receptor. Peptides 1997b;18:1555–1560.

    Article  CAS  Google Scholar 

  • Gourlet P, Vertongen P, Vandermeers A, Vandermeers-Piret MC, Rathe J, De Neef P, Waelbroeck M, Robberecht P. The long-acting vasoactive intestinal polypeptide agonist RO 25–1553 is highly selective of the VIP2 receptor subclass. Peptides 1997c;18:25–1553.

    Article  CAS  Google Scholar 

  • Gozes I, Fridkin M, Hill JM, Brenneman JE. Pharmaceutical VIP: prospects and problems. Curr Med Chem 1999;6:1019–1034.

    PubMed  CAS  Google Scholar 

  • Gressens P, Marret S, Hill JM, Brenneman DE, Gozes I, Fridkin M, Evrard P. Vasoactive intestinal peptide prevents excitotoxic cell death in the murine developing brain. J Clin Invest 1997;100:390–397.

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 1998;50:265–270.

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron 1993;11:333–342.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Ogawa N, Hagihara N, Yamamoto K, Imanishi K, Nogi H, Nishino A, Fujita T, Matsuda T, Nagata S, Baba A. Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide receptor chimeras reveal domains that determine specificity of vasoactive intestinal polypeptide binding and activation. Mol Pharmacol 1997;52:128–135.

    PubMed  CAS  Google Scholar 

  • Holtmann MH, Hadac EM, Miller LJ. Critical contributions of amino-terminal extracellular domains in agonist binding and activation of secretin and vasoactive intestinal polypeptide receptors. Studies of chimeric receptors. J Biol Chem 1995;270:14394–14398.

    Article  PubMed  CAS  Google Scholar 

  • Inooka H, Ohtaki T, Kitahara 0, Ikegami T, Endo S, Kitada C, Ogi K, Onda H, Fujino M, Shirakawa M. Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat Struct Biol 2001;8:161–165.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara T, Nakamura S, Kaziro Y, Takahashi T, Takahashi K, Nagata S. Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 1991;10:1635–1641.

    PubMed  CAS  Google Scholar 

  • Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 1992; 8:811–819.

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Briggs SL, Chandrasekhar S, Chirgadze NY, Clawson DK, Schevitz RW, Smiley DL, Tashjian AH, Zhang F. Crystal structure of human parathyroid hormone 1–34 at 0.9-A resolution. J Biol Chem 2000;275:1–34.

    PubMed  CAS  Google Scholar 

  • Juarranz MG, Van Rampelbergh J, Gourlet P, De Neef P, Cnudde J, Robberecht P, Waelbroeck M. Different vasoactive intestinal polypeptide receptor domains are involved in the selective recognition of two VPAC(2)-selective ligands. Mol Pharmacol 1999a;56:1280–1287.

    CAS  Google Scholar 

  • Juarranz MG, Van Rampelbergh J, Gourlet P, De Neef P, Cnudde J, Robberecht P, Waelbroeck M. Vasoactive intestinal polypeptide VPACI and VPAC2 receptor chimeras identify domains responsible for the specificity of ligand binding and activation. Eur J Biochem 1999b;265:449–456.

    Article  CAS  Google Scholar 

  • Knudsen SM, Tams JW, Wulff BS, Fahrenkrug J. A disulfide bond between conserved cysteines in the extracellular loops of the human VIP receptor is required for binding and activation. FEBS Lett 1997;412:141–143.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen SM, Tams JW, Fahrenkrug J. Role of second extracellular loop in the function of human vasoactive intestinal polypeptide/pituitary adenylate cyclase activating polypeptide receptor 1 (hVPAC1R). J Mol Neurosci 2000;14:137–146.

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M, Rousset M, Boissard C, Chevalier G, Zweibaum A, Rosselin G. Vasoactive intestinal peptide (VIP): A potent stimulator of adenosine 3 ‘5’: cyclic monophosphate accumulation in gut carcinoma cell lines in culture. Proc Natl Acad Sci USA 1978;75:2772–2775.

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M, Prieto JC, Amiranoff, B Dupont C, Hui Bon Hoa D, Rosselin G. Interaction of vasoactive intestinal peptide with isolated intestinal epithelial cells from rat. Eur J Biochem 1979;96:239–248.

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M, Amiranoff B, Boige N, Rouyer-Fessard C, Tatemoto K, Moroder L. Interaction of GRF with VIP receptors and stimulation of adenylate cyclase in rat and human intestinal epithelial membranes. FEBS Lett 1983;159:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M, Breant B, Rouyer-Fessard C. Molecular identification of VIP receptors in rat intestinal epithelium by covalent cross-linking. Eur J Biochem 1984;139:181–187.

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M, Couvineau A, Rouyer-Fessard C, Moroder L. Interaction of PHM, PHI and 24- glutamine PHI with human VIP receptors from colonic epithelium: comparison with rat intestinal receptors. Life Sci 1985;36:991–995.

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M, Couvineau A, Rouyer-Fessard C. Study of species specificity in growth hormone releasing factor (GRF) interaction with vasoactive intestinal peptide (VIP) receptors using GRF and VIP receptors from rat and human: Evidence that Ac-Tyrl hGRF is a competitive VIP antagonist in the rat. Mol Pharmacol 1986;29:23–27.

    PubMed  CAS  Google Scholar 

  • Laburthe M, Couvineau A. Molecular analysis of vasoactive intestinal peptide receptors: A comparison with receptors for VIP-related peptides. Ann N Y Acad Sci 1988;:296–313.

    Google Scholar 

  • Laburthe M, Kitabgi P, Couvineau A, Amiranoff B. Peptide receptors and signal transduction in the digestive tract. Handbook Exp Pharmacol 1993;106:133–176.

    Article  CAS  Google Scholar 

  • Laburthe M, Couvineau A, Gaudin P, Maoret JJ, Rouyer-Fessard C, Nicole P. Receptors for VIP, PACAP, secretin, GRF, glucagon, GLP-I, and other members of their new family of G protein-linked receptors: Structure-function relationship with special reference to the human VIP-1 receptor. Ann NY Acad Sci 1996;805:94–109.

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M, Couvineau A, Voisin T. “Receptors for peptides of the VIP/PACAP and PYY/NPY/PP families”. In Gastrointestinal Endocrinology, Greeley GH eds. Humana Press 1999;pp125–157.

    Google Scholar 

  • Laburthe M, Couvineau A, Marie JC. VPAC receptors for VIP and PACAP. Receptors Channels 2002, in press.

    Google Scholar 

  • Lefkowitz RJ, Cotecchia S, Samama P, Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 1993;14:303–307.

    Article  PubMed  CAS  Google Scholar 

  • Leyton J, Gozes Y, Pisegna J, Coy D, Purdom S, Casibang M, Zia F, Moody TW. PACAP(6–38) is a PACAP receptor antagonist for breast cancer cells. Breast Cancer Res Treat 1999;56:6–38.

    Article  PubMed  CAS  Google Scholar 

  • Lins L, Couvineau A, Rouyer-Fessard C, Nicole P, Maoret JJ, Benhamed M, Brasseur R, Thomas A, Laburthe M. The human VPAC1 receptor: three-dimensional model and mutagenesis of the N-terminal domain. J Biol Chem 2001;276:10153–10160.

    Article  PubMed  CAS  Google Scholar 

  • Lutz EM, Sheward WJ, West KM, Morrow JA, Fink G, Harmar AJ. The VIP2 receptor: Molecular characterization of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett 1993; 334:3–8.

    Article  PubMed  CAS  Google Scholar 

  • Lutz EM, MacKenzie CJ, Johnson M, West K, Morrow JA, Harmar AJ, Mitchell R. Domains determining agonist selectivity in chimaeric VIP2 (VPAC2)/PACAP (PAC1) receptors. Br J Pharmacol 1999;128:934–940.

    Article  PubMed  CAS  Google Scholar 

  • Lyu RM, Germano PM, Choi JK, Le SV, Pisegna JR. Identification of an essential amino acid motif within the C terminus of the pituitary adenylate cyclase-activating polypeptide type I receptor that is critical for signal transduction but not for receptor internalization. J Biol Chem 2000;275:36134–36142.

    Article  PubMed  CAS  Google Scholar 

  • McCulloch DA, Lutz EM, Johnson MS, Robertson DN, MacKenzie CJ, Holland PJ, Mitchell R. ADP-ribosylation factor-dependent phospholipase D activation by VPAC receptors and a PAC(1) receptor splice variant. Mol Pharmacol 2001;59:1523–1532.

    PubMed  CAS  Google Scholar 

  • McKnight AJ, Gordon S. The EGF-TM7 family: unusual structures at the leukocyte surface. J Leukoc Biol 1998; 63:271–280.

    PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 1989;164:567–574.

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Jiang L, Dahl RR, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase-activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 1990;170:643–648.

    Article  PubMed  CAS  Google Scholar 

  • Moody TW. Peptides and growth factors in non-small cell lung cancer. Peptides 1996;17:545–55.

    Article  PubMed  CAS  Google Scholar 

  • Moreno D, Gourlet P, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. Development of selective agonists and antagonists for the human vasoactive intestinal polypeptide VPAC(2) receptor. Peptides 2000;21:1543–1549.

    Article  PubMed  CAS  Google Scholar 

  • Moro O, Lerner EA. Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase-activating peptide type I receptor agonist. J Biol Chem 1997;272:966–970.

    Article  PubMed  CAS  Google Scholar 

  • Moro O, Wakita K, Ohnuma M, Denda S, Lerner EA, Tajima M. Functional characterization of structural alterations in the sequence of the vasodilatory peptide maxadilan yields a pituitary adenylate cyclase-activating peptide type 1 receptor-specific antagonist. J Biol Chem 1999;274:23103–23110.

    Article  PubMed  CAS  Google Scholar 

  • Morrow JA, Lutz EM, West KM, Fink G, Harmar AJ. Molecular cloning and expression of a cDNA encoding a receptor for pituitary adenylate cyclase-activating polypeptide (PACAP). FEBS Lett 1993;329:99–105.

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, Ishihara T, Robberecht P, Libert F, Parmentier M, Christophe J, Vassart G. Doubt expressed about identity of remaining orphan clone. RDC1 may not be VIP receptor. Trends Pharmacol Sci 1992;13:102–103.

    Article  PubMed  CAS  Google Scholar 

  • Nicole P, Du K, Couvineau A, Laburthe M. Site-directed mutagenesis of human vasoactive intestinal peptide receptor subtypes VIP1 and VIP2: evidence for difference in the structure-function relationship. J Pharmacol Exp Ther 1998;284:744–750.

    PubMed  CAS  Google Scholar 

  • Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A, Couvineau A, Martinez J, Brasseur R, Laburthe M. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 2000a;275:24003–24012.

    Article  CAS  Google Scholar 

  • Nicole P, Maoret JJ, Couvineau A, Momany FA, Laburthe M. Tryptophan 67 in the human VPAC(1) receptor: crucial role for VIP binding. Biochem Biophys Res Commun 2000b;276:654–659.

    Article  CAS  Google Scholar 

  • O’Donnell M, Garippa RJ, Rinaldi N, Selig WM, Simko B, Renzetti L, Tannu SA, Wasserman MA, Welton A, Bolin DR. Ro 25–1553: a novel, long-acting vasoactive intestinal peptide agonist. Part II: Effect on in vitro and in vivo models of pulmonary anaphylaxis. J Pharmacol Exp Therapeut 1994;270:25–1553.

    Google Scholar 

  • Ohtaki T, Masuda Y, Ishibashi Y, Kitada C, Arimura A, Fujino M. Purification and characterization of the receptor for pituitary adenylate cyclase-activating polypeptide. J Biol Chem 1993;268:26650–26657.

    PubMed  CAS  Google Scholar 

  • Olde B, Sabirsh A, Owman C. Molecular mapping of epitopes involved in ligand activation of the human receptor for the neuropeptide, VIP based on hybrids with the human secretin receptor. J Mol Neurosci 1998;11:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, Bockaert J, Joumot L. Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity of PACAP-27 and PACAP-38 in phospholipase C activation. J Biol Chem 1996;271:22146–22151.

    Article  PubMed  CAS  Google Scholar 

  • Park CG, Ganguli SC, Pinon DI, Hadac EM, Miller LI Cross-chimeric analysis of selectivity of secretin and VPAC(1) receptor activation. J Pharmacol Exp Ther 2000;295:682–688.

    PubMed  CAS  Google Scholar 

  • Pisegna JR, Wank S. Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc Natl Acad Sci USA 1993;90:6345–6349.

    Article  PubMed  CAS  Google Scholar 

  • Pisegna JR, Wank SA. Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. J Biol Chem 1996;271:17267–17274.

    Article  PubMed  CAS  Google Scholar 

  • Pisegna JR, Leyton J, Coelho T, Hida T, Jakowlew S, Birrer M, Fridkin M, Gozes I, Moody TW. PACAP hybrid: a new PACAP receptor antagonist. Life Sci 1997;61:631–9.

    Article  PubMed  CAS  Google Scholar 

  • Prieto JC, Laburthe M, Rosselin G. Interaction of vasoactive intestinal peptide with isolated intestinal epithelial cells from rat. Eur J Biochem 1979;96:229–237.

    Article  PubMed  CAS  Google Scholar 

  • Rawlings SR. PACAP, PACAP receptors, and intracellular signalling. Mol Cell Endocrinol 1994;101:C5–C9.

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC. In vitro identification of VIP receptors in human tumors: Potential clinical implications. Ann NY Acad Sci 1996;805:753–759.

    Article  PubMed  CAS  Google Scholar 

  • Robberecht P, Gourlet P, De Neef P, Woussen-Colle MC, Vandermeers-Piret MC, Vandermeers A, Christophe J. Receptor occupancy and adenylate cyclase activation in AR 4–2J rat pancreatic acinar cell membranes by analogs of pituitary adenylate cyclaseactivating peptides amino-terminally shortened or modified at position 1, 2, 3, 20, or 21. Mol Pharmacol 1992;42:4–2.

    PubMed  CAS  Google Scholar 

  • Robichon A, Marie JC. Selective photolabeling of high and low affinity binding sites for vasoactive intestinal peptide (VIP): evidence for two classes of covalent VIP-receptor complexes in intestinal cell membranes. Endocrinology 1987;120:978–985.

    Article  PubMed  CAS  Google Scholar 

  • Said SI, Mutt, V. Polypeptide with broad biological activity: Isolation from small intestine. Science 1970;169:1217–1218.

    Article  PubMed  CAS  Google Scholar 

  • Said SI. Vasoactive intestinal peptide. J Endocrinol Invest 1986;9:191–200.

    PubMed  CAS  Google Scholar 

  • Schafer H, Schmidt WE. Characterization and purification of the solubilized pituitary adenylate-cyclase-activating polypeptide-1 receptor from porcine brain using a biotinylated ligand. Eur J Biochem 1993;217:823–830.

    Article  PubMed  CAS  Google Scholar 

  • Schafer H, Zheng J, Morys-Wortmann C, Folsch UR, Schmidt WE. Structural motifs of pituitary adenylate cyclase-activating polypeptide (PACAP) defining PAC1-receptor selectivity. Regul Pept 1999;79:83–92.

    Article  PubMed  CAS  Google Scholar 

  • Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995;268:98–100.

    Article  PubMed  CAS  Google Scholar 

  • Solano RM, Langer I, Perret J, Vertongen P, Juarranz MG, Robberecht P, Waelbroeck M. Two basic residues of the h-VPAC1 receptor second transmembrane helix are essential for ligand binding and signal transduction. J Biol Chem 2001;276:1084–1088.

    Article  PubMed  CAS  Google Scholar 

  • Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L. Differential signal transduction by five splice variants of the PACAP receptor. Nature 1993;365:170–175.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel AM. Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol 1996;58:143–170.

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan SP, Robichon A, Peterson KE, Goetzl EJ. Cloning and expression of the human vasoactive intestinal peptide receptor. Proc Natl Acad Sci USA 1991;88:4986–4990.

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan SP, Patel DR, Huang JX, Goetzl EJ. Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem Biophys Res Commun 1993;193:546–553.

    Article  PubMed  CAS  Google Scholar 

  • Stacey M, Lin HH, Gordon S, McKnight AJ. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 2000;25:284–289.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda M, Tastenoy M, Van Rampelbergh J, Goosens JF, De Neef P, Waelbroeck M, Robberecht P. Molecular cloning and functional characterization of a human receptor from SUP-Tl lymphoblasts. Biochem Biophys Res Commun 1994;205:1617–1624.

    Article  PubMed  CAS  Google Scholar 

  • Tams JW, Jorgensen RA, Holm A, Fahrenkrug J. Creation of a selective antagonist and agonist of the rat VPAC(1) receptor using a combinatorial approach with vasoactive intestinal peptide 6–23 as template. Mol Pharmacol 2000;58:6–23.

    PubMed  CAS  Google Scholar 

  • Teng BQ, Grider JR, Murthy KS. Identification of a VIP-specific receptor in guinea pig tenia coli. Am J Physiol 2001;281:G718–G725.

    CAS  Google Scholar 

  • Tornoe K, Hannibal J, Fahrenkrug J, Holst JJ. PACAP-(1–38) as neurotransmitter in pig pancreas: receptor activation revealed by the antagonist PACAP-(1–38). Am J Physiol. 1997;273:G436–46.

    PubMed  CAS  Google Scholar 

  • Uchida D, Tatsuno I, Tanaka T, Hirai A, Saito Y, Moro 0, Tajima M. Maxadilan is a specific agonist and its deleted peptide (M65) is a specific antagonist for PACAP type 1 receptor. Ann N Y Acad Sci 1998;865:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich CD, Holtmann M, Miller LJ. Secretin and vasoactive intestinal peptide receptors: Members of a unique family of G protein-coupled receptors. Gastroenterology 1998;114:382–397.

    Article  PubMed  CAS  Google Scholar 

  • Usdin TB, Bonner TI, Mezey E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 1994;135:2662–2680.

    Article  PubMed  CAS  Google Scholar 

  • Vandermeers A, Vandenborre S, Hou X, de Neef P, Robberecht P, Vandermeers-Piret MC, Christophe J. Antagonistic properties are shifted back to agonistic properties by further N-terminal shortening of pituitary adenylate-cyclase-activating peptides in human neuroblastoma NB-OK-1 cell membranes. Eur J Biochem 1992;208:815–819.

    Article  PubMed  CAS  Google Scholar 

  • Van Rampelbergh J, Gourlet P, De Neef P, Robberecht P, Waelbroeck M. Properties of the pituitary adenylate cyclase-activating polypeptide I and II receptors, vasoactive intestinal peptidel, and chimeric amino-terminal pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptidel receptors: evidence for multiple receptor states. Mol Pharmacol 1996;50:1596–1604.

    PubMed  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacol Rev 2000; 52:269–324.

    PubMed  CAS  Google Scholar 

  • Vilardaga JP, De Neef P, Di Paolo E, Bollen A, Waelbroeck M, Robberecht P. Properties of chimeric secretin and VIP receptor proteins indicate the importance of the N-terminal domain for ligand discrimination. Biochem Biophys Res Commun 1995;211:885–891.

    Article  PubMed  CAS  Google Scholar 

  • Xia M, Sreedharan SP, Bolin DR, Gaufo GO, Goetzl EJ. Novel cyclic peptide agonist of high potency and selectivity for the type II vasoactive intestinal peptide receptor. J Pharmacol Exp Therapeut 1997;281:629–633.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laburthe, M., Couvineau, A., Nicole, P. (2003). Molecular Pharmacology and Structure-Function Analysis of PACAP/Vip Receptors. In: Vaudry, H., Arimura, A. (eds) Pituitary Adenylate Cyclase-Activating Polypeptide. Endocrine Updates, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0243-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0243-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4983-9

  • Online ISBN: 978-1-4615-0243-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics