Skip to main content

The Fossil Record of Shell-Breaking Predation on Marine Bivalves and Gastropods

  • Chapter
Predator—Prey Interactions in the Fossil Record

Part of the book series: Topics in Geobiology ((TGBI,volume 20))

Abstract

Any treatment of durophagous (shell-breaking) predation on bivalves and gastropods through geologic time must address the molluscivore’s signature preserved in the victim’s skeleton. Pre-ingestive breakage or crushing is only one of four methods of molluscivory (Vermeij, 1987; Harper and Skelton, 1993), the others being whole-organism ingestion, insertion and extraction, and boring. Other authors in this volume treat the last behavior, whereas whole-organism ingestion, and insertion and extraction, however common, are unlikely to leave preservable evidence. Bivalve and gastropod ecologists and paleoecologists reconstruct predator-prey relationships based primarily on two, although not equally useful, categories of pre-ingestive breakage, namely lethal and sublethal (repaired) damage. Peeling crabs may leave incriminating serrated, helical fractures in whorls of high-spired gastropods (Bishop, 1975), but unfortunately most lethal fractures are far less diagnostic of the causal agent and often indistinguishable from abiotically induced, taphonomic agents of shell degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. R., 1986, Resistance to and repair of shell breakage induced by durophages in Late Ordovician brachiopods, J. Paleontol. 60:273–285.

    Google Scholar 

  • Alexander, R. R., and Dietl, G. P., 2001, Shell repair frequencies in New Jersey bivalves: A Recent baseline for tests of escalation with Tertiary, Mid-Atlantic congeners, Palaios 16:354–371.

    Google Scholar 

  • Allmon, W. D., Nieh, J. C., and Norris, R. D., 1990, Drilling and peeling of turritelline gastropods since the Late Cretaceous, Palaeontology 33:595–611.

    Google Scholar 

  • Anderson, R. C., 1994, Octopus bites clam, Festivus 26:58–59.

    Google Scholar 

  • Ansell, A. D., 1969, Defensive adaptations to predation in the Mollusca, Proc. Symp. Mollusca 2:487–512.

    Google Scholar 

  • Baluk, W., and Radwanski, A., 1996, Stomatopod predation upon gastropods from the Korytnica Basin and from other classical Miocene localities in Europe, Acta Geol. Polon. 46:279–304.

    Google Scholar 

  • Bambach, R. 1993, Seafood through time: Changes in biomass, energetics, and productivity in the marine ecosystem, Paleobiology 19:372–397.

    Google Scholar 

  • Bergman, J., Geller, J. B., and Chow, V., 1983, Morphological divergence and predator-induced shell repair in Alia carinata (Gastropoda: Prosobranchia), Veliger 26:116–118.

    Google Scholar 

  • Bien, W., Wendt, J. M., and Alexander, R. R., 1995, Paleoecology of the Late Cretaceous oysters from New Jersey and Delaware, in: Contributions to Paleontology of New Jersey (J. Baker, ed.), Geological Association of New Jersey, Wayne, NJ, pp. 62–71.

    Google Scholar 

  • Bishop, G. A., 1975, Traces of predation, in: The Study of Trace Fossils (R. W. Frey, ed.), Springer-Verlag, New York, pp. 261–281.

    Google Scholar 

  • Blundon, J. A., and Kennedy, V. S., 1982, Mechanical and behavioral aspects of blue crab, Callinectes sapidus (Rathbun), predation on Chesapeake Bay bivalves, J. Exper. Mar. Biol. Ecol. 65:47–65.

    Google Scholar 

  • Blundon, J. A, and Vermeij, G., 1983, Effects of shell repair on shell strength in the gastropod Littorina irrorata, Mar. Biol. 76:41–45.

    Google Scholar 

  • Bond, P. N., and Saunders, W. B., 1989, Sublethal injury and shell repair in Upper Mississippian ammonoids, Paleobiology 15:414–428.

    Google Scholar 

  • Boshoff, P. H., 1968, A preliminary study on conchological physio-pathology, with special reference to Pelecypoda, Ann. Natal Mus. 20:199–216.

    Google Scholar 

  • Bottjer, D., 1985, Bivalve paleoecology, in: Mollusks: Notes for a Short Course (D. J. Bottjer, C. S. Hickman and P. D. Ward, eds.), Univ. of Tennessee, Department of Geological Sciences Studies in Geology 13, pp. 112–137.

    Google Scholar 

  • Botton, M. L., 1984, Diet and food preferences of the adult horseshoe crab Limulus polyphemus in Delaware Bay, New Jersey, USA, Mar. Biol. 81:199–207.

    Google Scholar 

  • Boulding, E. G., 1984, Crab-resistant features of shells of burrowing bivalves: decreasing vulnerability by increasing handling time, J. Exper. Mar. Biol. Ecol. 76:201–223.

    Google Scholar 

  • Boulding, E. G., and LaBarbera, M., 1986, Fatigue damage: repeated loading enables crabs to open larger bivalves, Biol. Bull. 171:538–547.

    Google Scholar 

  • Boulding, E. G., Hoist, M., and Pikon, V., 1999, Changes in selection on gastropod shell size and thickness with wave-exposure on Northeastern Pacific shores, J. Exper. Mar. Biol. Ecol. 232: 2317–239.

    Google Scholar 

  • Brett. C. E., 1990, Predation, in: Paleobiology: A Synthesis (D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Scientific, Oxford, pp. 368–372.

    Google Scholar 

  • Brett, C. E., and Walker, S., in press, Predators and predation in Paleozoic marine environments, in: The Fossil Record of Predation (M. Kowalewski and P. H. Kelley, eds.), Paleontological Society Papers, Vol. 8.

    Google Scholar 

  • Brunton, C. H. C., 1966, Predation and shell damage in a Visean brachiopod fauna, Palaeontology 9:355–359.

    Google Scholar 

  • Bulkley, P. T., 1968, Shell damage and repair in five members of the genus Acmaea, Veliger 11 (Suppl.):64–66.

    Google Scholar 

  • Cadée, G. C., 1999, Shell damage and shell repair in the Antarctic limpet Nacella concinna from King George Island, J. Sea Res. 41:149–161.

    Google Scholar 

  • Cadée, G. C., 2001, Herring gulls feeding on recent invader in the Wadden Sea, Ensis directus, in: Evolutionary Biology of the Bivalvia (E. M. Harper, J. D. Taylor, and J. A. Crame, eds.), The Geological Society, London, pp. 459–464.

    Google Scholar 

  • Cadée, G. C, Cadée-Coenen, J., and Checa, A., 2000, Schelpreparatie bij Patella depressa verzameld nabij Cadiz, Corresp.-blad Ned. Malac. Ver. 317:128–130.

    Google Scholar 

  • Cadée, G. C., Walker, S. E., and Flessa, K. W., 1997, Gastropod shell repair in the intertidal of Bahia la Choya (N. Gulf of California), Palaeogeogr. Palaeoclim. Palaeoecol. 136:67–78.

    Google Scholar 

  • Caldwell, R. L. and Dingle, H., 1976, Stomatopods, Sci. Am. 234:80–89.

    Google Scholar 

  • Carriker, M., 1951, Observations on the penetration of tightly closing bivalves by Busycon and other predators, Ecology 32:73–83.

    Google Scholar 

  • Carter, J. G., 1980, Environmental and biological control of bivalve shell mineralogy and microstructure, in: Skeletal Growth of Aquatic Organisms: Biological Record of Environmental Change (D. C. Rhoads and R. A. Lutz, eds.), Plenum Press, NewYork, pp. 69–168.

    Google Scholar 

  • Carter, R. M., 1967, The shell ornament of Hysteroconcha and Hecuba (Bivalvia): a test case for inferential functional morphology, Veliger 10:59–71.

    Google Scholar 

  • Carter, R. M., 1968, On the biology and paleontology of some bivalve Mollusca, Palaeogeogr. Palaeoclim. Palaeoecol. 4:29–65.

    Google Scholar 

  • Checa, A., 1993, Non-predatory shell damage in Recent deep-endobenthic bivalves from Spain, Palaeogeogr. Palaeoclim. Palaeoecol. 100:309–331.

    Google Scholar 

  • Coen, L. D., and Heck, Jr., K. L, 1991, The interacting effects of siphon nipping and habitat on bivalve (Mercenaria mercenaria (L.) growth in a subtidal seagrass (Halodule wrightii Aschers) meadow, J. Exper. Mar. Biol. Ecol. 145:1–13.

    Google Scholar 

  • Colton, H. S., 1908, How Fulgur and Sycotypus eat oysters, mussels, and clams, Proc. Acad. Nat. Sci. Phil. 60:3–10.

    Google Scholar 

  • Conway Morris, S., and Whittington, H. B., 1979, The animals of the Burgess Shale, Sci. Am. 24:122–123.

    Google Scholar 

  • Currey, J. D., 1980, Mechanical properties of the molluscan shell, in: The Mechanical Properties Of Biological Materials (J. F. Vincent and J. D. Currey, eds.), Symposia of the Society for Experimental Biology 34, Cambridge University Press, New York, pp. 75–97.

    Google Scholar 

  • Currey, J. D., 1990, Biomechanics of mineralized skeletons, in: Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (J. G. Carter, ed.), Van Nostrand Reinhold, pp. 11–25.

    Google Scholar 

  • Currey, J. D., and Brear, K., 1984, Fatigue fracture of mother of pearl and its significance for predatory techniques, J. Zool. Soc. London 204:541–548.

    Google Scholar 

  • Currey, J. D., and Hughes, R. N., 1982, Strength of the dogwhelk Nucella lapillus and the winkle Littorina littorea from different habitats, J. Animal Ecol. 51:47–56.

    Google Scholar 

  • Currey, J. D., and Kohn, A. J., 1976, Fracture in the crossed lamellar structure of Conus shells, J. Materials Res. 11:1615–1623.

    Google Scholar 

  • Dame, R. F., 1996, Ecology of Marine Bivalves: An Ecosystem Approach, CRC Press, Inc. Boca Rotan.

    Google Scholar 

  • Dietl, G. P., 2002, Predators and dangerous prey in the fossil record: evolution of the busyconine whelk-Mercenaria predator-prey system. Unpublished Ph.D. Dissertation, North Carolina State University.

    Google Scholar 

  • Dietl, G. P., and Alexander, R. R., 1998, Shell repair frequencies in whelks and moon snails from Delaware and southern New Jersey, Malacologia 39:151–165.

    Google Scholar 

  • Dietl, G. P., Alexander, R. R., and Bien, W., 2000, Escalation in Late Cretaceous-early Paleocene oysters (Gryphaeidae) from the Atlantic Coastal plain, Paleobiology 26:215–237.

    Google Scholar 

  • Dietl, G. P., and Kelley, P. H., 2001, Mid-Paleozoic latitudinal predation gradient: distribution of brachiopod ornamentation reflects shifting Carboniferous climate, Geology 29:111–114.

    Google Scholar 

  • Dodd, J. R., 1964, Environmentally controlled variation in the shell structure of a pelecypod species, J. Paleontol. 38:1065–1071.

    Google Scholar 

  • Donovan, D. A., Danko, J. P., and Carefoot, T. H., 1999, Functional significance of shell sculpture in gastropod molluscs: tests of a predator-deterrent hypothesis in Ceratostoma foliatum (Gmelin), J. Exper. Mar. Biol. Ecol. 236:235–251.

    Google Scholar 

  • Ebbestad, J. O. R., 1998, Multiple attempted predation in the Middle Ordovician gastropod Bucania gracillima, Geol. Forenings I Stock. Forhand 120:27–33.

    Google Scholar 

  • Ebbestad, J. O. R., and Peel, J. S., 1997, Attempted predation and shell repair in Middle and Upper Ordovician gastropods, J. Paleontol. 71:1007–1019.

    Google Scholar 

  • Edward, J. K. P., Ramesh, M. X., and Ayakkannu, K., 1992, Comparative study of holes in bivalves, chipped and bored by the muricid gastropods Chicoreus ramosus, Chicoreus virgineus and Murex tribulus, Phuket Mar. Biol. Cent. Spec. Publ. 11:106–110.

    Google Scholar 

  • Edwards, A. L. 1988, Latitudinal clines in shell morphologies of Busycon carica (Gmelin 1791), J. Shellfish Res. 7:461–466.

    Google Scholar 

  • Elliott, D. K., and Brew, D. C., 1988, Cephalopod predation on a Desmoinesian brachiopod from the Naco Formation, Central Arizona, J. Paleontol. 6:145–147.

    Google Scholar 

  • Elner, R. W., and Lavoie, R. E., 1983, Predation on American oysters (Crassostrea virginica [Gmelin]) by American lobsters (Homarus americanus Milne-Edwards), rock crabs (Cancer irroratus Say), and mud crabs (Neopanope sayi [Smith]), J. Shellfish Res. 3:129–134.

    Google Scholar 

  • Feifarek, B. P., 1987, Spines and epibionts as antipredator defenses in the thorny oyster Spondylus americanus Hermann, J. Exper. Mar. Biol. Ecol. 105:39–56.

    Google Scholar 

  • Gabriel, J. M., 1981, Differing resistance of various mollusc shell material to simulated whelk attack, J. Zool. London, 194:363–369.

    Google Scholar 

  • Geary, D., Allmon, W. D., and Reaka-Kudla, M. L., 1991, Stomatopod predation on fossil gastropods from the Plio-Pleistocene of Florida, J. Paleontol. 65:355–360.

    Google Scholar 

  • Geller, J. B., 1983, Shell repair frequencies of two intertidal gastropods from northern California: microhabitat differences, Veliger 26:113–115.

    Google Scholar 

  • George, R. W., and Main, A. R., 1968, The evolution of spiny lobsters (Palinuridae): A study of evolution in the marine environment, Evolution 22:803–820.

    Google Scholar 

  • Gilinsky, N. L., and Bennington, J. B. 1994, Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of the paleontological record, Paleobiology 20:245–258.

    Google Scholar 

  • Hallam, A., 1968, Morphology, palaeoecology, and evolution of the genus Gryphaea in the British Lias, Phil. Trans. R. Soc. London (B) 254:91–128.

    Google Scholar 

  • Harper, E. M., 1991, The role of predation in the evolution of cementation, Palaeontology 34:455–460.

    Google Scholar 

  • Harper, E. M., 1994, Molluscivory by the asteroid Coscinasterias acitispina (Stimpson), in: The Malacofauna of Hong Kong and Southern China III (B. Morton, ed.), Hong Kong University Press, Hong Kong, pp. 339–355.

    Google Scholar 

  • Harper, E. M., and Skelton, P. W., 1993, The Mesozoic marine revolution and epifaunal bivalves, Scripta Geol., Special Issue 2:127–153.

    Google Scholar 

  • Hickman, C. S., 1985, Gastropod morphology and function, in: Mollusks: Notes for A Short Course (T.W. Broadhead, ed.), Univ. Tennessee, Knoxville, Department of Geological Sciences, Studies in Geology 13, pp. 138–156.

    Google Scholar 

  • Hirayama, R., 1997, Distribution and diversity of Cretaceous chelonoids, in: Ancient Marine Reptiles (J. M. Callaway and E. L. Nicholls, eds.), Academic Press, New York, pp. 235–241

    Google Scholar 

  • Horny, R. J., 1997, Shell breakage and repair in Sinuitopsis neglecta (Mollusca, Tergomya) from the middle Ordovician of Bohemia, Casopis Narodniho muzea Rada prirodovedna 166:137–142.

    Google Scholar 

  • Huene, F. R., Von, 1956, Palaontologie und Phylogenie der niederen Tetrapoden, Gustav Fischer, Jena, Deutschland.

    Google Scholar 

  • Juanes, F., 1992, Why do decapod crustaceans prefer small-sized molluscan prey?, Mar. Ecol Progr. Series 87:239–249.

    Google Scholar 

  • Kardon, G., 1998, Evidence from the fossil record of an antipredatory exaptation: Conchiolin layers in corbulid bivalves, Evolution 52:68–79.

    Google Scholar 

  • Kamat, S., Su, X., Ballarini, R., and Heuner, A. H., 2000, Structural basis for the fracture toughness of the shell of the conch Strombus gigas, Nature 405:1036–1040.

    Google Scholar 

  • Kauffman, E. G., 1972, Ptychodus predation in a Cretaceous Inoceramus, Palaeontology 15:439–444.

    Google Scholar 

  • Kelley, P. H., and Hansen, T. A., 1996, Recovery of the naticid gastropod predator-prey system from the Cretaceous-Tertiary and Eocene-Oligocene extinctions, in: Biotic Recovery from Mass Extinction Events (M. B. Hart, ed.), Geological Society Special Publication 102, London, pp. 373–386.

    Google Scholar 

  • Kohn, A. J., 1992, Conus striatus survives attacks by gonodactyloid!, Veliger 35:398- 401.

    Google Scholar 

  • Kohn, A. J., 1999, Antipredatory defences of shelled gastropods, in: Functional Morphology of the Invertebrate Skeleton (E. Savazzi, ed.), John Wiley and Sons, Ltd, London, pp. 169–181.

    Google Scholar 

  • Kohn, A. J. and Arua, I., 1999, An Early Pleistocene molluscan assemblage from Fiji: gastropod fanual composition, paleoecology and biogeography, Palaeogeogr. Palaeoclim. Palaeoecol. 146:99–145.

    Google Scholar 

  • Kowalewski, M., Flessa, K. W., and Marcot, J. D., 1997, Predatory scars in the shells of a Recent lingulid brachiopod: Paleontological and ecological implications, Acta Palaeontol. Polon. 42:497–532.

    Google Scholar 

  • Krantz, G. E., and Chamberlain, J. V., 1978, Blue crab predation on cultchless oyster spat, Proc. Nat. Shellfisheries Assoc. 68:38–41

    Google Scholar 

  • Kraueter, J. N., 2001, Predators and Predation, in: Biology of the Hard Clam (J. N. Kraeuter and M. Castagna, eds.), Elsevier Science, New York, pp. 441–589.

    Google Scholar 

  • Kropp, R. K., 1992, Repaired shell damage among soft-bottom mollusks on the continental shelf and upper slope north of Point Conception, California, Veliger 35:36–51.

    Google Scholar 

  • Lau, C. J., 1987, Feeding behavior of the Hawaiian slipper lobster Scyllarides squammosus with a review of decapod crustacean feeding tactics on molluscan prey, Bull. Mar. Sci. 41:378–391.

    Google Scholar 

  • Lawton, P., and Hughes, R. N., 1985, Foraging behaviour of the crab Cancer pagurus feeding on the gastropods Nucella lapillus and Littorina littorea: comparisons with optimal foraging theory, Mar. Ecol. Prog. Ser. 27:143–154.

    Google Scholar 

  • Lindström, A., and Peel, J. S., 1997, Failed predation and shell repair in the gastropod Poleumita from the Silurian of Gotland, Vestnik eskeho geologickeho ustavu 72:115–126.

    Google Scholar 

  • Leighton, L. R., 1999, Possible latitudinal predational gradient in middle Paleozoic oceans, Geology 27:47–50.

    Google Scholar 

  • Leighton, L. R., 2001, New directions in the paleoecology of Paleozoic brachiopods, in: Brachiopods Ancient and Modern: A Tribute to G. Arthur Cooper (S. J. Carlson and M. R. Sandy, eds.), Paleontological Society Papers, Vol. 7, pp. 185–205.

    Google Scholar 

  • Leighton, L. R., In press, Inferring predation intensity in the marine fossil record, Paleobiology.

    Google Scholar 

  • Leonard, G. H., Bertness, M. D., and Yund, P., 1999, Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis, Ecology 80:1–14.

    Google Scholar 

  • Liljedahl, L., 1985, Ecological aspects of a silicified bivalve fauna from the Silurian of Gotland, Lethaia 18:53–66,

    Google Scholar 

  • Magalhaes, H., 1948, An ecological study of snails of the genus Busycon at Beaufort North Carolina, Ecol. Mongr. 18:379–409.

    Google Scholar 

  • Mapes, R. H., and Hansen, M. C, 1984, Pennsylvanian shark-cephalopod predation: a case study, Lethaia 17:175–183.

    Google Scholar 

  • Mapes, R. H., Fahrer, T. R., and Babcock, L. E., 1989. Sublethal and lethal injuries of Pennsylvanian conularids from Oklahoma, J. Paleontol. 63:34–37.

    Google Scholar 

  • Massare, J. A., 1987, Tooth morphology and prey preference of Mesozoic marine Reptiles, J. Vert. Paleontol. 7:121–137.

    Google Scholar 

  • Mauzey, K. P., Birkeland, C., and Dayton, P. K., 1968, Feeding behavior of asteroids and escape responses of their prey in Puget Sound region, Ecology 49:603–619.

    Google Scholar 

  • Nedin, C, 1999, Anomalocaris predation on non-mineralized and mineralized trilobites, Geology 27: 987–990.

    Google Scholar 

  • Norton, S. F., 1988, Role of the gastropod shell and operculum in inhibiting predation by fishes, Science 241:92–94.

    Google Scholar 

  • Oliver, J. S., Slattery, P. N., E. F. O’Connor, E. F., and Lowry, L. F., 1983, Walrus, Odobenus rosmarus, feeding in the Bering Sea benthos, Fisheries Bull. 81:501–512.

    Google Scholar 

  • Olsen, S. L., and Steadman, D. W., 1978, The fossil record of Glareolidae and Haematopodidae (Aves, Charadriiformes), Proc. Biol. Soc, Washington 91:972–981.

    Google Scholar 

  • Palmer, A. R., 1979, Fish predation and the evolution of gastropod shell sculpture: Experimental and geographic evidence, Evolution 33:697–713.

    Google Scholar 

  • Palmer, A. R., 1983, Relative cost of producing skeletal organic matter versus Calcification: evidence from marine gastropods, Mar. Biol. 75:287–292.

    Google Scholar 

  • Palmer, A., 1985, Quantum changes in gastropod shell morphology need not reflect speciation, Evolution 39:699–705.

    Google Scholar 

  • Palmer, A., 1990, Effect of crab effluent and scent of damaged conspecifics on feeding, growth, and shell morphology of the Atlantic dogwhelk Nucella lapillus (L.), Hydrobiologia 193:155–182.

    Google Scholar 

  • Papp, A., Zapfe, H., Bachmaer, F., and Tauber, A. F., 1947, Lebbenspurren mariner Krebse, K. Akad. Wiss. Wien, Math.-Naturewiss. Kl. Sitz.-ber. 155:281–317.

    Google Scholar 

  • Pan, H.-Z., 1991. Lower Turonian gastropod ecology and biotic interation in Helicaulax community from western Tarim Basin, southern Xinjiang, China, Paleoecol. China 1:266–280.

    Google Scholar 

  • Peel, J. S., 1984, Attempted predation and shell repair in Euomphalopterus (Gastropoda) from the Silurian of Gotland, Bull. Geol. Soc. Denmark 32:163–168.

    Google Scholar 

  • Peterson, C. H., and Quammen, M. L., 1982, Siphon nipping: its importance to small fishes and its impact on growth of the bivalve Prothothaca staminea (Conrad), J. Exper. Mar. Biol. Ecol. 63:249–268.

    Google Scholar 

  • Preston, S. J., Roberts, D., and Montgomery, W. I., 1993, Shell scarring in Calliostoma zizyphinum (Prosobranchia: Trochidae) from Strangford Lough, Northern Ireland, J. Moll. Studies 59:211–222.

    Google Scholar 

  • Raffaelli, D. G., 1978, The relationship between shell injuries, shell thickness, and habitat characteristics of the intertidal snail Littorina rudis Maton, J. Moll. Studies 44:166–170.

    Google Scholar 

  • Ramsey, K., Kaiser, M. J., C., Richardson, C. A., Veale, L. O., and Brand, A. R., 2000, Can shell scars on dog cockles (Glycymeris glycymeris L.) be used as indicators of fishing disturbance?, J. Sea Res. 43:167–176.

    Google Scholar 

  • Ramsey, K., Richardson, C.A., and M.J. Kaiser, 2001, Causes of shell scarring in the dog cockles Glycymeris glycymeris L., J. Sea Res. 45:131–139.

    Google Scholar 

  • Randall, J. E., 1964, Contributions to the biology of the queen conch, Stombus gigas, Bull. Mar. Sci. Gulf Carib. 14:246–295.

    Google Scholar 

  • Ray, M., and Stoner, A. W., 1995, Predation on a tropical spinose gastropod: the role of shell morphology, J. Exper. Mar. Biol. Ecol. 187:207–222.

    Google Scholar 

  • Reid, D. G., 1992, Predation by crabs on Littoraria species (Littorinidae) in Queensland mangrove forest. Proc. 3 rd Int. Symp. Littorinid Biol, Malacological Society, London, pp. 141–151.

    Google Scholar 

  • Repenning, C. A., 1976a, Enhydra and Enhydriodon from the Pacific Coast of North America, J. Res., U. S. Geol. Surv. 4:305–315.

    Google Scholar 

  • Repenning, C. A., 1967b, Adaptive evolution of sea lions and walruses, Syst. Zool. 25:375–390.

    Google Scholar 

  • Rhoads, D. C, Lutz, R. A., Cerrato, R. M., and Revelas, E. C., 1982, Growth and predation activity at deep- sea hydrothermal vents along the Galapagos Rift, J. Mar. Res. 40:503–516.

    Google Scholar 

  • Robba, E., and Ostinelli, F., 1975, Studi Paleoecologici sul Pliocene Ligure. Testimonianze di predazione sui Molluschi Pliocenici di Albenga, Riv. Ital. Palaeont. 81:309–372.

    Google Scholar 

  • Rolfe, W. D., 1969, Phyllocarida, in: Treatise on Invertebrate Paleontology, Part. R, Arthropoda. 4 (R. C. Moore and C. Teichert, eds), Geological Society of America, Boulder, Colorado, and University of Kansas, Lawrence, pp. R291–331.

    Google Scholar 

  • Sarycheva, T. S., 1949, Contribution à l étude des lesions durant la vie des coquille de Productides du Carbonifère, Trav. Inst. Paleontol. Acad. Sci. U. R. S. S., 280–292.

    Google Scholar 

  • Savazzi, E., 1991, Constructional morphology of strombid gastropods, Lethaia 24:311–324.

    Google Scholar 

  • Schindel, D. E., Vermeij, G. J., and Zipser, E., 1982, Frequencies of repaired shell fractures among the Pennsylvanian gastropods of north-central Texas, J.Paleontol. 56:729–740.

    Google Scholar 

  • Schram. F. R., 1981, Late Paleozoic crustacean communities, J. Paleontol. 55:126–137.

    Google Scholar 

  • Schmidt, N., 1989, Paleobiological implications of shell repair in Recent marine gastropods from the northern Gulf of California, Hist. Biol. 3:127–139.

    Google Scholar 

  • Seed, R. 1992, Crabs as predators of marine bivalve molluscs, in: Proceedings International Conference on Marine Biology, Hong Kong and Southern China (B. Morton, ed.), Hong Kong University Press, Hong Kong. pp. 393–418.

    Google Scholar 

  • Seed, R., and Hughes, R. N., 1995, Criteria for prey size-selection in molluscivorous crabs with contrasting claw morphologies, J. Exper. Mar. Biol. Ecol. 193:177–195.

    Google Scholar 

  • Sepkoski, J., 1984, A kinetic model of Phanerozoic taxonomic diveristy. III. Post-Paleozoic families and mass extinction, Paleobiology 10:246–267.

    Google Scholar 

  • Shanks, A. L., and Wright, W. G., 1986, Adding teeth to wave action: the destructive effects of wave-born rocks on intertidal organisms, Oecologia 69:420–428.

    Google Scholar 

  • Shoup, J. B., 1968, Shell opening by crabs of the genus Calappa, Science 160:887–888

    Google Scholar 

  • Signor, P. W. III, 1985, The role of shell geometry as a deterrent to predation in terebrid gastropods, Veliger 28:179–185.

    Google Scholar 

  • Signor, P. W., III, and, Brett, C. E., 1984, The mid-Paleozoic precursor to the Mesozoic marine revolution, Paleobiology 10:229–245.

    Google Scholar 

  • Smith, L. D., and Jennings, J. A., 2000, Induced defensive responses by the bivalve Mytilus edulis to predators with different attack modes, Mar. Biol. 136:461–469.

    Google Scholar 

  • Spencer, W. K., And Wright, C. W., 1966, Asterozoans, in: Treatise on Invertebrate Paleontology, Part U, Echinodermata 3 (R.C. Moore, ed.), Geological Society of America, Boulder, Colorado, and Universisty of Kansas Press, Lawrence, pp.U4–107.

    Google Scholar 

  • Spight, T. M., and Lyons, A., 1974, Development and functions of the shell sculpture of the marine snail Ceratostoma foliatum, Mar. Biol. 24:77–83.

    Google Scholar 

  • Stanley, S. M., 1988, Adaptive morphology of the shell of bivalves and gastropods, in: The Mollusca, vol. 11, Form and Function (E. R. Trueman and M. R. Clarke, eds.), Academic Press, New York, pp. 105–141.

    Google Scholar 

  • Taylor, J. D., and Layman, M., 1972, The mechanical properties of bivalve (mollusca) shell structures, Palaeontology 15:73–87.

    Google Scholar 

  • Trussell, G. C, 1996, Phenotypic plasticity in an intertidal snail: the role of a common crab predator, Evolution 50:448–454.

    Google Scholar 

  • Vale, F. K., and Rex, M. A., 1988, Repaired shell damage in deep sea prosobranch gastropods from the western North Atlantic, Malacologia 28:65–79.

    Google Scholar 

  • Vale, F. K., and Rex, M. A., 1989, Repaired shell damage in a complex of rissoid gastropods from the upper continental slope south of New England, Nautilus 103:105–108.

    Google Scholar 

  • Vermeij, G. J., 1977, The Mesozoic marine revolution: evidence from snails, predators and grazers, Paleobiology 3:245–258.

    Google Scholar 

  • Vermeij, G. J., 1978, Biogeography and Adaptation: Patterns of Marine Life, Harvard University Press, Cambridge.

    Google Scholar 

  • Vermeij, G. J., 1982a, Gastropod shell form, breakage, and repair in relation to predation by the crab Calappa, Malacologia 23:1–12.

    Google Scholar 

  • Vermeij, G. J., 1982b, Unsuccessful predation and evolution, Am. Nat. 120:701–720.

    Google Scholar 

  • Vermeij, G. J., 1982c, Environmental change and the evolutionary history of the periwinkle (Littorina littorea) in North America, Evolution 36:561–580.

    Google Scholar 

  • Vermeij, G. J., 1983a, Shell-breaking predation through time, in: Biotic Interactions in Recent and Fossil Benthic Communities (M. J. S. Tevesz and P. L. McCall, eds.), Plenum Press, New York. pp. 649–669.

    Google Scholar 

  • Vermeij, G. J., 1983b, Traces and trends of predation, with special reference to bivalved animals, Palaeontology 26:455–465.

    Google Scholar 

  • Vermeij, G. J., 1987, Evolution and Escalation: An Ecological History of Life. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Vermeij, G. J., 1989, Interoceanic differences in adaptation: effects of history and productivity, Mar. Ecol. Progr. Series 57:293–305.

    Google Scholar 

  • Vermeij, G. J., 1993, A Natural History of Shells. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Vermeij, G. J., and Currey, J. D., 1980, Geographical variation in the strength of thaidid snail shells, Biol. Bull. 158:383–389.

    Google Scholar 

  • Vermeij, G. J., and Dudley, E. C., 1982, Shell repair and drilling frequency in some gastropods from the Ripley Formation (Upper Cretaceous) of south-eastern U.S.A., Cretaceous Res. 3:397–403

    Google Scholar 

  • Vermeij, G. j., and Dudley, E. C., 1985, Distribution of adaptations: A comparison between the functional shell morphology of freshwater and marine pelecypods, in: The Mollusca, Vol. 10, Evolution (E. R. Trueman and M. R. Clarke, eds.), Academic Press, Inc., New York. pp. 461–478.

    Google Scholar 

  • Vermeij, G. J., and J. A. Veil, J. A., 1978, A latitudinal pattern in bivalve shell gaping, Malacologia 17:57–61.

    Google Scholar 

  • Vermeij, G. J., Zipser, E., and Dudley, E. C., 1980, Predation in time and space: peeling and drilling in terebrid gastropods, Paleobiology 6:352–364.

    Google Scholar 

  • Vermeij, G. J., Schindel, D. E., and Zipser, E., 1981, Predation through geological time: evidence from gastropod shell repair, Science 214:1024–1026.

    Google Scholar 

  • Vermeij, G. J., Zipser, E., and Zardini, R., 1982, Breakage-induced shell repair in some gastropods from the Upper Triassic of Italy, J. Paleontol. 56:233–235.

    Google Scholar 

  • Walker, S. E., 2001, Paleoecology of gastropods preserved in turbidite slope deposits from the Upper Pliocene of Ecuador, Palaeogr. Palaeoclim. Palaeoecol. 166:141–163.

    Google Scholar 

  • Walker, S., and Brett, C. E., in press, Post-Paleozoic patterns in marine predation: Was there a Mesozoic and Cenozoic marine predatory revolution?, in: The Fossil Record of Predation (M. Kowalewski and P. H. Kelley, eds.), Paleontological Society Papers, Vol. 8.

    Google Scholar 

  • Walker, S. E., and Voight, J. R., 1994, Paleoecologic and taphonomic potential of deepsea gastropods, Palaios 9:58–59.

    Google Scholar 

  • Walker, S. E., and Yamada, S. B., 1993, Implications for the gastropod fossil record of mistaken crab predation on empty mollusc shells, Palaeontology 36:735–741.

    Google Scholar 

  • Wells, H. W., 1958, Feeding habits of Murex fulvescens, Ecology 39:556–558.

    Google Scholar 

  • West, K., and Cohen, A., 1996, Shell microstructure of gastropods from Lake Tanganyika, Africa: Adaptation, convergent evolution, and escalation, Evolution 50:672–681.

    Google Scholar 

  • Yamaguchi, M., 1977, Shell growth and mortality rates in the coral reef gastropod Cerithium nodulosum in Pago Bay. Guam, Mariana Islands, Mar. Biol. 44:249–263.

    Google Scholar 

  • Zach, R., 1978, Selection and dropping of whelks by north-western crows, Behaviour 67:134–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alexander, R.R., Dietl, G.P. (2003). The Fossil Record of Shell-Breaking Predation on Marine Bivalves and Gastropods. In: Kelley, P.H., Kowalewski, M., Hansen, T.A. (eds) Predator—Prey Interactions in the Fossil Record. Topics in Geobiology, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0161-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0161-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4947-1

  • Online ISBN: 978-1-4615-0161-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics