Skip to main content

Chlamydia trachomatis and Chlamydia pneumoniae Vaccines

  • Chapter
New Bacterial Vaccines

Part of the book series: Medical Intelligence Unit ((MIUN))

Summary

Chlamydia spp. are obligate intracellular Gram negative bacteria with a unique biphasic developmental cycle. C. trachomatis and C. pneumoniae most frequently cause human infections. C. trachomatis strains of the trachoma biovar (serovar A, B and C) are mucosal pathogens that cause the ocular infection trachoma, the leading cause of preventable blindness in developing countries. The remaining serovars (D-K) of the trachoma biovar cause genital infections being the leading cause of sexually transmitted bacterial infections in the Western world with sequelae such as tubal factor infertility and ectopic pregnancy. There exists no vaccine against human Chlamydia infections. Clinical trials for vaccination against trachoma were initiated more than 3 decades ago. Inactivated whole-cell C. trachomatis EB preparations were used for immunization. Good but short-lived protection was observed. All Chlamydia species have highly homologous major outer membrane proteins (MOMP) that are immunogenic. This molecule has been studied in detail with respect to humoral and cellular immunity. In a mouse model a vaccine consisting of MOMP extracted from purified C. trachomatis gave protection. However, MOMP shows variable immunogenic domains. Therefore, other components are being sought for vaccine development. Genomics, molecular and cellular immunology, and nucleic acid immunizations are among the techniques used to exploit the immune response to develop component vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearce JH, Gaston JSH. Chlamydia. In: Susmann M, ed. Molecular Medical Microbiology. San Diego: Acad Press, 2001:1825–64.

    Google Scholar 

  2. Westrom LR. Incidence, prevalence and trends of acute pelvic inflammatory disease and its consequences in industrialised countries. Am. J Obstet Gynecol 1980; 138:880–892.

    PubMed  CAS  Google Scholar 

  3. Cates W, Wasserheit JN, Marchbanks PA. Pelvic inflammatory disease and tubla infertility — the preventable conditions. Ann. N Y Acad Sei 1994; 709:179–195.

    Article  Google Scholar 

  4. Grayston JT, Kuo C-C, Wang S-P et al. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med 1986; 315:161–168.

    Article  PubMed  CAS  Google Scholar 

  5. Grayston JT, Campbell LA, Kuo C-C et al. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis 1990; 161:618–625.

    Article  PubMed  CAS  Google Scholar 

  6. Hahn DL, Dodge RW, Glubjatnikov R. Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis and adult onset asthma. JAMA 1991; 266:225–230.

    Article  PubMed  CAS  Google Scholar 

  7. Johnston SL. Is Chlamydia pneumoniae important in asthma? The first controlled trialof therapy leaves the question unanswered. Am J Respir Crit Care Med 2001; 164:536–541.

    Google Scholar 

  8. Campbell LA, Rosenfeld M, Kuo C-C. The role of Chlamydia pneumoniae in atherosclerosis —recent evidence from animal models. Trends Microbiol 2000; 8:255–257.

    Article  PubMed  CAS  Google Scholar 

  9. Kaiman S, Mitchell W, Marathe R et al. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nature Genet 1999; 21:385–389.

    Article  Google Scholar 

  10. Read TD, Brunham RC, Shen C et al. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 2000; 28:1397–1406.

    Article  PubMed  CAS  Google Scholar 

  11. Shirai M, Hirakawa H, Kimoto M et al. Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA. Nucleic Acids Res 2000; 28:2311–2314.

    Article  PubMed  CAS  Google Scholar 

  12. Barnes RC. Laboratory diagnosis of human chlamydial infections. Clin Microbiol Rev 1989; 2; 119–136.

    PubMed  CAS  Google Scholar 

  13. Wang SP, Grayston JT. Human serology in Chlamydia trachomatis infection with microim-munofluorescence. J Infect Dis 1974; 130:388–397

    Article  PubMed  CAS  Google Scholar 

  14. Kuo CC, Jackson LA, Campbell LA et al. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 1995; 8:451–461.

    PubMed  CAS  Google Scholar 

  15. Ridgway GL. Advances in the antimicrobial therapy of chlamydial genital infections. J Infect 1992; 25: 51–59.

    Article  PubMed  Google Scholar 

  16. Manire G P. Structure of purified cell walls of dense forms of meningopneumonitis organisms. J Bacteriol 1966; 91:409–413.

    PubMed  CAS  Google Scholar 

  17. Matsumoto A. Electron microscopic observations of surface projections on Chlamydia psittaci reticulate bodies. J Bacteriol 1982; 150:358–364.

    PubMed  CAS  Google Scholar 

  18. Nichols BA, Setzer PY, Pang F et al. New view of the surface projections of Chlamydia trachomatis. J Bacteriol 1985; 164:344–349.

    PubMed  CAS  Google Scholar 

  19. Miyashita N, Matsumoto A. Establishment of a particle-counting method for purified elementary bodies of chlamydiae and evaluation of sensitivities of the IDEIA Chlamydia kit and DNA probe by using the purified elementary bodies. J Clin Microbiol 1992; 30:2911–2916.

    PubMed  CAS  Google Scholar 

  20. Caldwell HD, Kromhout J, Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 1981; 31:1161–1176.

    PubMed  CAS  Google Scholar 

  21. Longbottom D, Russell M, Dunbar SM et al. Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect Immun 1998; 66:1317–1324.

    PubMed  CAS  Google Scholar 

  22. Melgosa MP, Kuo C-C, Campbell LA. Outer membrane complex proteins of Chlamydia pneumoniae. FEMS Microbiol Lett 1993; 112:199–204.

    Article  PubMed  CAS  Google Scholar 

  23. Mygind PH, Christiansen G, Roepstorff P et al. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex. FEMS Microbiol Lett 2000; 186:163–169.

    Article  PubMed  CAS  Google Scholar 

  24. Knudsen K, Madsen AS, Mygind P et al. Identification of two novel genes encoding 97- to 99-kilodalton outer membrane proteins of Chlamydia pneumoniae. Infect Immun 1999; 67:375–383.

    PubMed  CAS  Google Scholar 

  25. Birkelund S, Lundemose AG, Christiansen G. Immunoelectron microscopy of lipopolysaccharide in Chlamydia trachomatis. Infect Immun 1989; 57:3250–3253.

    PubMed  CAS  Google Scholar 

  26. Birkelund S, Lundemose AG, Christiansen G. Chemical cross-linking of Chlamydia trachomatis. Infect Immun 1988; 56:654–659.

    PubMed  CAS  Google Scholar 

  27. Wolf K, Fischer E, Mead D et al. Chlamydia pneumoniae major outer membrane protein is a surface-exposed antigen that elicits antibodies primarily directed against conformation-dependent determinants. Infect Immun 2001; 69:3082–3091.

    Article  PubMed  CAS  Google Scholar 

  28. Mygind P, Christiansen G, Birkelund S. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2. J Bacteriol 1998; 180:5784–5787.

    PubMed  CAS  Google Scholar 

  29. Stephens RS, Koshiyama K, Lewis E et al. Heparin-binding outer membrane protein of chlamy-diae. Mol Microbiol 2001; 40:691–699.

    Article  PubMed  CAS  Google Scholar 

  30. Vandahl B, Christiansen G, Birkelund S. Expression of lipid modification of a polymorphic membrane protein in Chlamydia pneumoniae. In: Saikku P, ed. Proceedings of the Fourth Meeting of the European Society for Chlamydia Research. Helsingi: Universitas Helsingiensis, 2000:54.

    Google Scholar 

  31. Pedersen AS, Christiansen G, Birkelund S. Differential expression of Pmp10 in cell culture infected with Chlamydia pneumoniae CWL029. FEMS Microbiol Lett 2001; 203:153–159.

    Article  PubMed  CAS  Google Scholar 

  32. Stephens RS, Kaiman S, Lammel C et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998; 282:754–759.

    Article  PubMed  CAS  Google Scholar 

  33. Longbottom D, Findlay J, Vretou E et al. Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol Lett 1998; 164:111–117

    Article  PubMed  CAS  Google Scholar 

  34. Jahnig F. Structure predictions of membrane proteins are not that bad. Trends Biochem Sci 1990; 15:93–95.

    Article  PubMed  CAS  Google Scholar 

  35. Christiansen G, Pedersen AS, Hjerno K et al. Potential relevance of Chlamydia pneumoniae surface proteins to an effective vaccine. J Infect Dis 2000; 181:S528–37.

    Article  PubMed  CAS  Google Scholar 

  36. Bradley P, Cowen L, Menke M et al. Predicting the Beta-Helix Fold from Protein Sequence Data. In: Zimmer R, ed. Proceedings of the Fifth Annual International Conference on Computational Molecular Biology. New York: ACM Press, 2001:59–67

    Google Scholar 

  37. Vandahl B, Birkelund S, Christiansen G. Proteome analysis of the Chlamydia pneumoniae elementary body. Electrophoresis 2001; 22:1204–1223.

    Article  PubMed  CAS  Google Scholar 

  38. Benz I, Schmidt MA. AIDA-I, the adhesin involved in diffuse adherence of the diarrhoeagenic Escherichia coli strain 2787 (O126:H27), is synthesized via a precursor molecule. Mol Microbiol 1992; 6:1539–1546.

    Article  PubMed  CAS  Google Scholar 

  39. Bavoil PM, Hsia RC. Type III secretion in Chlamydia: a case of deja vu? Mol Microbiol 1998; 28:860–2.

    Article  PubMed  CAS  Google Scholar 

  40. Hackstadt T, Scidmore-Carlson MA, Shaw EI et al. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1999; 1:119–130.

    Article  PubMed  CAS  Google Scholar 

  41. Zhong G, Fan P, Ji H et al. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 2001; 193:935–942.

    Article  PubMed  CAS  Google Scholar 

  42. Brunham RC, Peeling R, Maclean I et al. Postabortal Chlamydia trachomatis salpingitis: correlating risk with antigen-specific serological responses and with neutralization. J Infect Dis 1987; 155:749–755.

    Article  PubMed  CAS  Google Scholar 

  43. Wang SP. The microimmunofluorescence test for Chlamydia pneumoniae infection: technique and interpretation. J Infect Dis 2000; 181:S421–5.

    Article  PubMed  CAS  Google Scholar 

  44. Wang SP, Grayston JT. Immunologic relationship between genital TRIC, lymphogranuloma venereum, and related organisms in a new microtiter indirect immunofluorescence test. Am J Ophthalmol 1970; 70:367–374.

    PubMed  CAS  Google Scholar 

  45. Newhall WJ, Batteiger B, Jones RB. 1982. Analysis of the human serological response to proteins of Chlamydia trachomatis. Infect Immun 38:1181–1189.

    PubMed  CAS  Google Scholar 

  46. Birkelund S, Lundemose AG, Christiansen G. Characterization and identification of early proteins in Chlamydia trachomatis serovar L2 by two-dimensional gel electrophoresis. Infect Immun 1990; 58:2478–2486.

    PubMed  Google Scholar 

  47. Birkelund S, Lundemose AG, Christiansen G. The 75-kilodalton cytoplasmic Chlamydia trachomatis L2 polypeptide is a DnaK-like protein. Infect Immun 1990; 58:2098–2104.

    PubMed  CAS  Google Scholar 

  48. Sanchez-Campillo M, Bini L, Comanducci M et al. Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 1999; 20:2269–2279.

    Article  PubMed  CAS  Google Scholar 

  49. Mygind P, Christiansen G, Persson K et al. Analysis of the humoral immune response to Chlamydia outer membrane protein 2. Clin Diagn Lab Immunol 1998; 5:313–318.

    PubMed  CAS  Google Scholar 

  50. Persson K, Osser S, Birkelund S et al. Antibodies to Chlamydia trachomatis heat shock proteins in women with tubal factor infertility are associated with prior infection by C. trachomatis but not by C. pneumoniae. Hum Reprod 1999; 14:1969–1973.

    Article  PubMed  CAS  Google Scholar 

  51. LaVerda D, Albanese LN, Ruther PE et al. Seroreactivity to Chlamydia trachomatis Hspl0 correlates with severity of human genital tract disease. Infect Immun 2000; 68:303–309.

    Article  PubMed  CAS  Google Scholar 

  52. Hayes LJ, Pickett MA, Conlan JW et al. The major outer-membrane proteins of Chlamydia trachomatis serovars A and B: intra-serovar amino acid changes do not alter specificities of serovar-and C subspecies-reactive antibody-binding domains. J Gen Microbiol 1990; 136:1559–1566.

    Article  PubMed  CAS  Google Scholar 

  53. Conlan JW, Clarke IN, Ward ME. Epitope mapping with solid-phase peptides: identification of type-, subspecies-, species- and genus-reactive antibody binding domains on the major outer membrane protein of Chlamydia trachomatis. Mol Microbiol 1988; 2:673–679.

    Article  PubMed  CAS  Google Scholar 

  54. Stephens RS, Wagar EA, Schoolnik GK. High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis. J Exp Med 1988; 167:817–831.

    Article  PubMed  CAS  Google Scholar 

  55. Batteiger BE. The major outer membrane protein of a single Chlamydia trachomatis serovar can possess more than one serovar-specific epitope. Infect Immun 1996; 64:542–547.

    PubMed  CAS  Google Scholar 

  56. Zhong G, Berry J, Brunham RC. Antibody recognition of a neutralization epitope on the major outer membrane protein of Chlamydia trachomatis. Infect Immun 1994; 62:1576–1583.

    PubMed  CAS  Google Scholar 

  57. Villeneuve A, Brossay L, Paradis G et al. Determination of neutralizing epitopes in variable domains I and IV of the major outer-membrane protein from Chlamydia trachomatis serovar K. Microbiology 1994; 140:2481–2487.

    Article  PubMed  CAS  Google Scholar 

  58. Qu Z, Cheng X, de la Maza LM et al. Characterization of a neutralizing monoclonal antibody directed at variable domain I of the major outer membrane protein of Chlamydia trachomatis C-complex serovars. Infect Immun 1993; 61:1365–1370.

    PubMed  CAS  Google Scholar 

  59. Pal S, Cheng X, Peterson EM et al. Mapping of a surface-exposed B-cell epitope to the variable sequent 3 of the major outer-membrane protein of Chlamydia trachomatis. J Gen Microbiol 1993; 139:1565–1570.

    Article  PubMed  CAS  Google Scholar 

  60. Peterson EM, Cheng X, Markofif BA et al. Functional and structural mapping of Chlamydia trachomatis species-specific major outer membrane protein epitopes byuse of neutralizing monoclonal antibodies. Infect Immun 1991; 59:4147–4153.

    PubMed  CAS  Google Scholar 

  61. Dowell SF, Peeling RW, Boman J et al. Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis 2001; 33:492–503.

    Article  PubMed  CAS  Google Scholar 

  62. Campbell LA, Kuo CC, Grayston JT. Structural and antigenic analysis of Chlamydia pneumoniae. Infect Immun 1990; 58:93–97

    PubMed  CAS  Google Scholar 

  63. Wiedmann-Al-Ahmad M, Schuessler P et al. Reactions of polyclonal and neutralizing anti-p54 monoclonal antibodies with an isolated, species-specific 54-kilodalton protein of Chlamydia pneumoniae. Clin Diagn Lab Immunol 1997; 4:700–704.

    PubMed  CAS  Google Scholar 

  64. Arno JN, Xie C, Jones RB et al. Identification of T cells that respond to serovar-specific regions of the Chlamydia trachomatis major outer membrane protein in persons with serovar E infection. J Infect Dis 1998; 178:1713–1718.

    CAS  Google Scholar 

  65. Ortiz L, Angevine M, Kim SK et al.T-cell epitopes in variable segments of Chlamydia trachomatis major outer membrane protein elicit serovar-specific immune responses in infected humans. Infect Immun 2000; 68:1719–23.

    Article  PubMed  CAS  Google Scholar 

  66. Ortiz L, Demick KP, Petersen JW et al. Chlamydia trachomatis major outer membrane protein (MOMP) epitopes that activate HLA class II-restricted T cells from infected humans. J Immunol 1996; 157:4554–4567.

    PubMed  CAS  Google Scholar 

  67. Lauemoller SL, Holm A, Hilden J et al. Quantitative predictions of peptide binding to MHC class I molecules using specificity matrices and anchor-stratified calibrations. Tissue Antigens 2001; 57:405–414.

    Article  PubMed  CAS  Google Scholar 

  68. Kim SK, Devine L, Angevine M et al. Direct detection and magnetic isolation of Chlamydia trachomatis major outer membrane protein-specific CD8+ CTLs with HLA class I tetramers. J Immunol 2000; 165:7285–7292.

    PubMed  CAS  Google Scholar 

  69. Kim SK, DeMars R. Epitope clusters in the major outer membrane protein of Chlamydia trachomatis. Curr Opin Immunol. 2001; 13:429–436.

    Article  PubMed  CAS  Google Scholar 

  70. Brunham RC, Zhang D. Transgene as vaccine for Chlamydia. Am Heart J 1999; 138:S519–522.

    Article  PubMed  CAS  Google Scholar 

  71. Bannantine JP, Griffiths RS, Viratyosin W et al. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2000; 2:35–47.

    Article  PubMed  CAS  Google Scholar 

  72. Fling SP, Sutherland RA, Steele LN et al. CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc Natl Acad Sei USA 2001; 98:1160–1165.

    Article  CAS  Google Scholar 

  73. Stagg AJ. Vaccines against Chlamydia: approaches and progress. Mol Med Today 1998; 4:166–173.

    Article  PubMed  CAS  Google Scholar 

  74. Murdin AD, Gellin B, Brunham RC et al. Collaborative multidisciplinary workshop report: progress toward a Chlamydia pneumoniae vaccine. J Infect Dis 2000; 181:S552–557.

    Article  PubMed  Google Scholar 

  75. Dhir SP, Agarwal LP, Detels R et al. Field trial of two bivalent trachoma vaccines in children of Punjab Indian villages. Am J Ophtalmol 1967; 63:1639–1644

    Google Scholar 

  76. Clements C, Dhir SP, Grayston JT et al. Long term follow-up study of a trachoma vaccine trial in villages of Northern India. Am J Ophtalmol 1979; 87:350–353

    CAS  Google Scholar 

  77. Wang SP, Grayston JT, Alexander ER. Trachoma vaccine studies in Monkeys. Am J Ophtalmol 1967; 63:1615–1630.

    Google Scholar 

  78. Morrison RP, Belland RJ, Lyng K et al. Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med 1989; 170:1271–1283.

    Article  PubMed  CAS  Google Scholar 

  79. Patton DL, Sweeney YT, Kuo C-C. Demonstration of delayed hypersensitivity in Chlamydia trachomatis in monkeys: a pathogenic mechanism of tubal damage. J Infect Dis 1994; 169:680–683.

    Article  PubMed  CAS  Google Scholar 

  80. Tan TW, Herring AJ, Anderson IE et al. Protection of sheep against Chlamydia psittaci infection with a subcellular vaccine containing the major outer membrane protein. Infect Immun 1990; 58:3101–3108.

    PubMed  CAS  Google Scholar 

  81. Herring, AJ, Jones GE, Dunbar SM et al. Recombinant vaccines against Chlamydia psittaci — an overview of results using bacterial expression and a new approach using plant virus “overcoat” system. In: Stephens RS, Byrne, GI, Christinsen, eds. Diseases of Sheep. Bologna: Sicieta Editrice Esculpio, 1998:434–437.

    Google Scholar 

  82. Entrican G, Buxton D, Longbottom D. Chlamydial infection in sheep: immune control versus fetal pathology. J R Soc Med 2001; 94:273–277.

    PubMed  CAS  Google Scholar 

  83. Zhang YX, Stewart SJ, Caldwell HD. Protective monoclonal antibodies to Chlamydia trachomatis serovar- and serogroup-specific major outer membrane protein determinants. Infect Immun 1989; 57:636–638.

    PubMed  CAS  Google Scholar 

  84. Cotter TW, Meng Q, Shen ZL et al. Protective efficacy of major outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. Infect Immun 1995; 63:4704–4714.

    PubMed  CAS  Google Scholar 

  85. Beagley KW, Timms P. Chlamydia trachomatis infection: incidence, health cost and prospects for vaccine development. J Reprod Immunol 2000; 48:47–68.

    Article  PubMed  CAS  Google Scholar 

  86. Pal S, Theodor I, Peterson EM et al. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune response against a genital challenge. Infect Immun 2001; 69:6240–6247.

    Article  PubMed  CAS  Google Scholar 

  87. Igietseme JU, Murdin A. Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect Immun 2000; 68:6798–806.

    Article  PubMed  CAS  Google Scholar 

  88. Su H, Messer R, Whitmire W et al. Vaccination against chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable Chlamydiae. J Exp Med 1998; 188:809–818.

    Article  PubMed  CAS  Google Scholar 

  89. Vanrompay D, Cox E, Volckaert G et al. Turkeys are protected from infection with Chlamydia psittaci by plasmid DNA vaccination against the major outer membrane protein. Clin Exp Immunol 1999; 118:49–55.

    Article  PubMed  CAS  Google Scholar 

  90. Stephens RS. Chlamydial genomics and vaccine antigen discovery. J Infect Dis 2000; 181:S521–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birkelund, S., Christiansen, G. (2003). Chlamydia trachomatis and Chlamydia pneumoniae Vaccines. In: New Bacterial Vaccines. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0053-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0053-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4902-0

  • Online ISBN: 978-1-4615-0053-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics