Skip to main content

Anaerobic In Situ Bioremediation

  • Chapter
MTBE Remediation Handbook

Abstract

Many laboratories have been researching methods to accelerate in situ bioremediation of MTBE and TBA. Most of the focus has been on aerobic bioremediation because there are a number of aerobes known to utilize MTBE as a sole carbon and energy source; however, past research with the BTEX compounds indicates that anaerobic bioremediation can be just as effective as aerobic bioremediation (Lovley, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R., Rooney-Varga, J., Gaw, C., and Lovley, D. 1998. Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environmental Science and Technology. 32, 1222–1229.

    Article  CAS  Google Scholar 

  • Anderson, R.T. and Lovley, D.R. 2000. Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environmental Science and Technology. 34, 2261–2266.

    Article  CAS  Google Scholar 

  • Borden, R.C., Daniel, R.A., LeBrun IV, L.E., and Davis, C.W. 1997. Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer. Water Resources Research. 33, 1105–1115.

    Article  CAS  Google Scholar 

  • Bradley, P.M., Chapelle, F.H., and Landmeyer, J.E. 2001a. Effect of redox conditions on MTBE biodegradation in surface water sediments. Environmental Science and Technology. 35, 4643–4647.

    Article  CAS  Google Scholar 

  • Bradley, P.M., Chapelle, F.H., and Landmeyer, J.E. 2001b. Methyl tert-butyl ether mineralization in surface-water sediment microcosms under denitrifying conditions. Applied and Environmental Microbiology. 67, 1975–1978.

    Article  CAS  Google Scholar 

  • Finneran, K.T. and Lovley, D.R. 2001. Anaerobic degradation of methyl tertbutyl ether (MTBE) and tert-butyl alcohol (TBA). Environmental Science and Technology. 35, 1785–1790.

    Article  CAS  Google Scholar 

  • Finneran, K.T. and Lovley, D.R. Unpublished data.

    Google Scholar 

  • Hutchins, S.R. 1991. Optimizing BTEX biodegradation under denitrifying conditions. Environmental Toxicology and Chemistry. 10, 1437–1448.

    Article  CAS  Google Scholar 

  • Hutchins, S.R., Downs, W.C, Wilson, J.T., Smith, G.B., Kovacs, D.A., Fine, D.D., Douglass, R.H., and Hendrix, D.J. 1991. Effect of nitrate addition on biorestoration of fuel-contaminated aquifer: Field demonstration. Ground Water. 29, 571–580.

    Article  CAS  Google Scholar 

  • Landmeyer, J.E., Chapelle, F.H., Bradley, P.M., Pankow, J.F., Church, C.D., and Tratnek, P.G. 1998. Fate of MTBE relative to benzene in a gasoline-contaminated aquifer (1993-1998). Ground Water Monitoring and Remediation. Fall 1998, 93–102.

    Google Scholar 

  • Lovley, D.R. 1997. Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. Journal of Industrial Microbiology and Biotechnology. 18, 75–81.

    Article  CAS  Google Scholar 

  • Lovley, D.R., Phillips, E.J.P., and Lonergan, D.J. 1991. Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments. Environmental Science and Technology. 25, 1062–1067.

    Article  CAS  Google Scholar 

  • Lovley, D.R., Chapelle, F.H., and Woodward, J.C. 1994a. Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environmental Science and Technology. 28, 1205–1210.

    Article  CAS  Google Scholar 

  • Lovley, D.R., Woodward, J.C, and Chapelle, F.H. 1994b. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature. 370, 128–131.

    Article  CAS  Google Scholar 

  • Lovley, D.R., Woodward, J.C., and Chapelle, F.H. 1996. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Applied and Environmental Microbiology. 62, 288–291.

    CAS  Google Scholar 

  • Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P., and Coates, J.D. 1998. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimica et Hydrobiologica. 26, 152–157.

    Article  CAS  Google Scholar 

  • Lovley, D.R. and Nevin. Unpublished data.

    Google Scholar 

  • Mormile, M.M., Liu, S., and Suflita, J.M. 1994. Anaerobic biodegradation of gasoline oxygenates: Extrapolation of information to multiple sites and redox conditions. Environmental Science and Technology. 28, 1728–1732.

    Article  Google Scholar 

  • Salanitro, J.P. 1995. Understanding the limitations of microbial metabolism of ethers used as fuel octane enhancers. Current Opinion in Biotechnology. 6, 337–340.

    Article  CAS  Google Scholar 

  • Scott, D.T., McKnight, D.M., Blunt-Harris, E.L., Kolesar, S.E., and Lovley, D.R. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science and Technology. 32, 2984–2989.

    Article  CAS  Google Scholar 

  • Somsamak, P., Cowan, R.M., and Haggblom, M.M. 2001. Anaerobic biotransformation of fuel oxygenates under sulfate-reducing conditions. FEMS Microbiolology Ecology. 37, 259–264.

    Article  CAS  Google Scholar 

  • Suflita, J.M. and Mormile, M.R. 1993. Anaerobic degradation of known and potential gasoline oxygenates in the terrestrial subsurface. Environmental Science and Technology. 27, 976–978.

    Article  CAS  Google Scholar 

  • Weiner, J.M. and Lovley, D.R. 1998a. Anaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment. Applied and Environmental Microbiology. 64, 775–778.

    CAS  Google Scholar 

  • Weiner, J.M. and Lovley, D.R. 1998b. Rapid benzene degradation in meth-anogenic sediments from a petroleum-contaminated aquifer. Applied and Environmental Microbiology. 64, 1937–1939.

    CAS  Google Scholar 

  • Wilson, J.T., Cho, J.S., Wilson, B.H., and Vardy, J.A. 2000. Natural Attenuation of MTBE in the Subsurface under Methanogenic Conditions. USEPA, Ada, Oklahoma. EPA/600/R-00/006. www.epa.gov/ada/pubs/reports.html.

  • Yeh, C.K. and Novak, J.T. 1994. Anaerobic biodegradation of gasoline oxygenates in soils. Water Environment Research. 66, 744–752.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ellen E. Moyer Paul T. Kostecki

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Amherst Scientific Publishers

About this chapter

Cite this chapter

Finneran, K.T., Lovley, D.R. (2003). Anaerobic In Situ Bioremediation. In: Moyer, E.E., Kostecki, P.T. (eds) MTBE Remediation Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0021-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0021-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4889-4

  • Online ISBN: 978-1-4615-0021-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics