Skip to main content

Potential Uses of Lactic Acid Bacteria in Seafood Products

  • Chapter
  • First Online:
Seafood Processing By-Products

Abstract

Lactic acid bacteria (LAB) have been used for centuries in the fish fermentation of a variety of seafood products. The preservative ability of LAB in seafood is attributed to the production of antimicrobial metabolites, including organic acids and bacteriocins. Bacteriocins generally exert their antimicrobial action by interfering with the cell wall or the membrane of target organisms, either by inhibiting cell wall biosynthesis or by causing pore formation, subsequently resulting in death. The incorporation of bacteriocins as a biopreservative ingredient into model food systems has been studied extensively and has been shown to be effective in the control of pathogenic and spoilage microorganisms. In seafood packed in both vacuum (VP) and modified atmosphere packaging (MAP), commonly CO2 enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air, but is always several log units lower than the trimethylamine oxide (TMAO) reducing and CO2-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). In any case, the function of LAB in marine products is complex, depending on the species, strains, interaction with other bacteria, and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert a bioprotective effect in relation to undesirable bacteria. The bioprotective potential of endogenous LAB in relation to pathogens and spoiling bacteria has often been highlighted. However, the technology is still in its infancy compared with dairy foods and meat products, in which either the carbohydrate content (dairy products) or sugar and salt added (meat products) favor the acidification by LAB that enable a natural preservation of the product. Successful studies on LAB as probiotics for fish have intensified, but this potential is still to be explored for humans. Although not usual, some applications of LAB for the fermentation of marine products and by-products are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ababouch L (2006) Assuring fish safety and quality in international fish trade. Mar Pollut Bull 53(10):561–568

    Article  CAS  Google Scholar 

  • Amagliani G, Omiccioli E, Brandi G, Bruce IJ, Magnani M (2010) A multiplex magnetic capture hybridisation and multiplex real-time PCR protocol for pathogen detection in seafood. Food Microbiol 27(5):580–585

    Article  CAS  Google Scholar 

  • Aruoma OI (2006) The impact of food regulation on the food supply chain. Toxicology 221(1):119–127

    Article  CAS  Google Scholar 

  • Ash R (1980) Hydrolytic capacity of the trout (Salmo gairdneri) intestinal mucosa with respect to three specific dipeptides. Comp Biochem Physiol Part B: Comp Biochem 65(1):173–176

    Google Scholar 

  • Austin B, Al-Zahrani AMJ (1988) The effect of antimicrobial compounds on the gastrointestinal microflora of rainbow trout, Salmo gairdneri Richardson. J Fish Biol 33(1):1–14

    Article  CAS  Google Scholar 

  • Azad IS, Ai-Marzouk A (2008) Autochthonous aquaculture probiotics—a critical analysis. Res J Biotechnol 3:171–177

    Google Scholar 

  • Baya AM, Toranzo AE, Lupiani B, Li T, Roberson BS, Hetrick FM (1991) Biochemical and serological characterization of Carnobacterium spp. isolated from farmed and natural populations of striped bass and catfish. Appl Environ Microbiol 57(11):3114–3120

    CAS  Google Scholar 

  • Bernadsky G, Rosenberg E (1992) Drag-reducing properties of bacteria from the skin mucus of the cornetfish (Fistularia commersonii). Microbial Ecol 24(1):63–76

    Article  CAS  Google Scholar 

  • Brock TD, Madigan MT (1991) Biology of microorganisms. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Burr G, Gatlin D, Ricke S (2005) Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J World Aqua Soc 36(4):425–436

    Article  Google Scholar 

  • Buzby JC, Roberts T, Jordan Lin C-T, MacDonald JM (1996) Bacterial foodborne disease: medical costs and productivity losses. Agricultural Economics Reports No. AER-741

    Google Scholar 

  • Castell CH, Anderson GW (1948) Bacteria associated with spoilage of cod fillets. J Fish Board Canada 7(6):370–377

    Google Scholar 

  • Chinivasagam HN, Bremner HA, Wood AF, Nottingham SM (1998) Volatile components associated with bacterial spoilage of tropical prawns. Int J Food Microbiol 42(1):45–55

    Article  CAS  Google Scholar 

  • Connil N, Plissoneau L, Onno B, Pilet M-F, Prevost H, Dousset X (2002) Growth of Carnobacterium divergens V41 and production of biogenic amines and divercin V41 in sterile cold-smoked salmon extract at varying temperatures, NaCl levels, and glucose concentrations. J Food Prot 65(2):333–338

    CAS  Google Scholar 

  • Dainty RH, Mackey BM (1992) The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. J Appl Microbiol 73:103s–114s

    Google Scholar 

  • Dalgaard P (1995) Qualitative and quantitative characterization of spoilage bacteria from packed fish. Int J Food Microbiol 26(3):319–333

    Article  CAS  Google Scholar 

  • Dalgaard P, Mejlholm O, Huss HH (1997) Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish. Int J Food Microbiol 38(2): 169–179

    Article  CAS  Google Scholar 

  • Dalgaard P, Buch P, Silberg S (2002) Seafood spoilage predictor—development and distribution of a product specific application software. Int J Food Microbiol 73(2):343–349

    Article  Google Scholar 

  • Degnan AJ, Kaspar CW, Otwell WS, Tamplin ML, Luchansky JB (1994) Evaluation of lactic acid bacterium fermentation products and food-grade chemicals to control Listeria monocytogenes in blue crab (Callinectes sapidus) meat. Appl Environ Microbiol 60(9):3198–3203

    CAS  Google Scholar 

  • DePaola A, Jones JL, Woods J, Burkhardt W III, Calci KR, Krantz JA, Bowers JC, Kasturi K, Byars RH, Jacobs E, Williams-Hill D, Nabe K (2010) Bacterial and viral pathogens in live oysters: 2007 United States market survey. Appl Environ Microbiol 76(9):2754–2768

    Article  CAS  Google Scholar 

  • Duffes F, Corre C, Leroi F, Dousset X, Boyaval P (1999a) Inhibition of Listeria monocytogenes by in situ produced and semipurified bacteriocins of Carnobacterium spp. on vacuum-packed, refrigerated cold-smoked salmon. J Food Prot 62:1394–1403

    CAS  Google Scholar 

  • Duffes F, Leroi F, Boyaval P, Dousset X (1999b) Inhibition of Listeria monocytogenes by Carnobacterium spp. strains in a simulated cold smoked fish system stored at 4 °C. Int J Food Microbiol 47(1):33–42

    Article  CAS  Google Scholar 

  • Ebringer L, Ferenčík M, Krajčovič J (2008) Beneficial health effects of milk and fermented dairy products—review. Folia Microbiol 53(5):378–394

    Article  CAS  Google Scholar 

  • Einarsson H, Lauzon HL (1995) Biopreservation of brined shrimp (Pandalus borealis) by bacteriocins from lactic acid bacteria. Appl Environ Microbiol 61(2):669–676

    CAS  Google Scholar 

  • Eldar A, Ghittino C, Asanta L, Bozzetta E, Goria M, Prearo M, Bercovier H (1996) Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Cur Microbiol 32(2):85–88

    Article  CAS  Google Scholar 

  • Ennahar S, Sonomoto K, Ishizaki A (1999) Class IIa bacteriocins from lactic acid bacteria: antibacterial activity and food preservation. J Biosci Bioeng 87(6):705–716

    Article  CAS  Google Scholar 

  • Failler P, Van de Walle G, Lecrivain N, Himbes A, Lewins R (2007) Future prospects for fish and fishery products. 4. Fish consumption in the European Union in 2015 and 2030. Part 1. European overview. FAO Fisheries Circular, Rome

    Google Scholar 

  • FAO (2010) Fisheries and Aquaculture Department. The State of World Fisheries and Aquaculture 2010. A report of the Food and Agriculture Organization of the United Nations. FAO, Rome

    Google Scholar 

  • Feldhusen F (2000) The role of seafood in bacterial foodborne diseases. Microbes Infect 2(13): 1651–1660

    Article  CAS  Google Scholar 

  • Gennari M, Tomaselli S, Cotrona V (1999) The microflora of fresh and spoiled sardines (Sardina pilchardus) caught in Adriatic (Mediterranean) Sea and stored in ice. Food Microbiol 16(1):15–28

    Article  Google Scholar 

  • Giannakourou MC, Koutsoumanis K, Nychas GJE, Taoukis PS (2001) Development and assessment of an intelligent shelf life decision system for quality optimization of the food chill chain. J Food Prot 64(7):1051–1057

    CAS  Google Scholar 

  • Giménez B, Dalgaard P (2003) Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon. J Appl Microbiol 96(1):96–109

    Article  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien RIA, Eberl LEO, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178(22):6618–6622

    CAS  Google Scholar 

  • Gram L, Huss HH (1996) Microbiological spoilage of fish and fish products. Int J Food Microbiol 33(1):121–137

    Article  CAS  Google Scholar 

  • Gram L, Wedell-Neergaard C, Huss HH (1990) The bacteriology of fresh and spoiling Lake Victorian Nile perch (Lates niloticus). Int J Food Microbiol 10(3):303–316

    Article  CAS  Google Scholar 

  • Guldager HS, Boknaes N, Osterberg C, Nielsen J, Dalgaard P (1998) Thawed cod fillets spoil less rapidly than unfrozen fillets when stored under modified atmosphere at 2C. J Food Prot 61(9):1129–1136

    CAS  Google Scholar 

  • Huber I, Spanggaard B, Appel FK, Rossen L, Nielsen T, Gram L (2004) Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 96(1):117–132

    Article  CAS  Google Scholar 

  • Huss HH, Reilly A, Karim Ben Embarek P (2000) Prevention and control of hazards in seafood. Food Control 11(2):149–156

    Article  Google Scholar 

  • Iwamoto M, Ayers T, Mahon BE, Swerdlow DL (2010) Epidemiology of seafood-associated infections in the United States. Clin Microbiol Rev 23(2):399–411

    Article  Google Scholar 

  • Jöborn A, Dorsch M, Olsson JC, Westerdahl A, Kjelleberg S (1999) Carnobacterium inhibens sp. nov., isolated from the intestine of Atlantic salmon (Salmo salar). Int J Syst Evol Microbiol 49(4):1891–1898

    Google Scholar 

  • Joerger MC, Klaenhammer TR (1990) Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J Bacteriol 172(11):6339–6347

    CAS  Google Scholar 

  • Joffraud J-J, Leroi F, Roy C, Berdague JL (2001) Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon. Int J Food Microbiol 66(3):175–184

    Article  CAS  Google Scholar 

  • Jørgensen LV, Dalgaard P, Huss HH (2000a) Multiple compound quality index for cold-smoked salmon (Salmo salar) developed by multivariate regression of biogenic amines and pH. J Agric Food Chem 48(6):2448–2453

    Article  Google Scholar 

  • Jørgensen LV, Huss HH, Dalgaard P (2000b) The effect of biogenic amine production by single bacterial cultures and metabiosis on cold-smoked salmon. J Appl Microbiol 89(6):920–934

    Article  Google Scholar 

  • Kelly WJ, Asmundson RV, Huang CM (1996) Isolation and characterization of bacteriocin-producing lactic acid bacteria from ready-to-eat food products. Int J Food Microbiol 33(2):209–218

    Article  CAS  Google Scholar 

  • Kjelleberg S, Steinberg P, Givskov MC, Gram L, Manefield M, De Nys R (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microbial Ecol 13: 85–93

    Article  Google Scholar 

  • Koutsoumanis K (2001) Predictive modeling of the shelf life of fish under nonisothermal conditions. Appl Environ Microbiol 67(4):1821–1829

    Article  CAS  Google Scholar 

  • Koutsoumanis K, Nychas G-JE (1999) Chemical and sensory changes associated with microbial flora of Mediterranean boque (Boops boops) stored aerobically at 0, 3, 7, and 10 C. Appl Environ Microbiol 65(2):698–706

    CAS  Google Scholar 

  • Koutsoumanis K, Nychas G-JE (2000) Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life predictions. Int J Food Microbiol 60(2):171–184

    Article  CAS  Google Scholar 

  • Kumar R, Surendran PK, Thampuran N (2008) Evaluation of culture, ELISA and PCR assays for the detection of Salmonella in seafood. Lett Appl Microbiol 46(2):221–226

    Article  CAS  Google Scholar 

  • Laurenti E (2007) Fish and fishery products: world apparent consumption statistics based on food balance sheets (1961–1995), vol 821. FAO, Rome

    Google Scholar 

  • Lauzon HL, Gudmundsdottir S, Pedersen MH, Budde BB, Gudmundsdottir BK (2008) Isolation of putative probionts from cod rearing environment. Vet Microbiol 132(3):328–339

    Article  CAS  Google Scholar 

  • Lerke P, Farber L, Adams R (1967) Bacteriology of spoilage of fish muscle IV. Role of protein. Appl Microbiol 15(4):770–776

    CAS  Google Scholar 

  • Leroi F, Joffraud J-J, Chevalier F, Cardinal M (2001) Research of quality indices for cold-smoked salmon using a stepwise multiple regression of microbiological counts and physico-chemical parameters. J Appl Microbiol 90(4):578–587

    Article  CAS  Google Scholar 

  • Liston J (1980) Microbiology in fishery science. In: Advances in fish science and technology: papers presented at the Jubilee conference of the Torry Research Station, Aberdeen, 23–27 July 1979, pp 138–157

    Google Scholar 

  • Liu JY, Li AH, Ji C, Yang WM (2009) First description of a novel Weissella species as an opportunistic pathogen for rainbow trout Oncorhynchus mykiss (Walbaum) in China. Vet Microbiol 136(3–4):314–320

    Article  Google Scholar 

  • Ma C-W, Cho Y-S, Oh K-H (2009) Removal of pathogenic bacteria and nitrogens by Lactobacillus spp. JK-8 and JK-11. Aquaculture 287(3–4):266–270

    Article  CAS  Google Scholar 

  • Martinez-Urtaza J, Liebana E (2005) Use of pulsed-field gel electrophoresis to characterize the genetic diversity and clonal persistence of Salmonella senftenberg in mussel processing facilities. Int J Food Microbiol 105(2):153–163

    Article  CAS  Google Scholar 

  • Matamoros S, Leroi F, Cardinal M, Gigout F, Kasbi Chadli F, Cornet J, Prevost H, Pilet MF (2009) Psychrotrophic lactic acid bacteria used to improve the safety and quality of vacuum-packaged cooked and peeled tropical shrimp and cold-smoked salmon. J Food Prot 72(2):365–374

    CAS  Google Scholar 

  • McKean JD (2001) The importance of traceability for public health and consumer protection. Revue Scientifique et Technique (Int Off Epizoot) 20(2):363

    CAS  Google Scholar 

  • Mejlholm O, Dalgaard P (2002) Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products. Lett Appl Microbiol 34(1):27–31

    Article  CAS  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker R, Bøgwald J, Castex M, Ringø E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302(1):1–18

    Article  Google Scholar 

  • Minami A, Chaicumpa W, Chongsa-Nguan M, Samosornsuk S, Monden S, Takeshi K, Makino S-i, Kawamoto K (2010) Prevalence of foodborne pathogens in open markets and supermarkets in Thailand. Food Control 21(3):221–226

    Article  Google Scholar 

  • Mudarris M, Austin B (1988) Quantitative and qualitative studies of the bacterial microflora of turbot, Scophthalmus maximus L., gills. J Fish Biol 32(2):223–229

    Article  Google Scholar 

  • Munro PO, Barbour A, Birkbeck TH (1994) Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions. J Appl Microbiol 77(5):560–566

    Google Scholar 

  • Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70(2–4):113–128

    Article  CAS  Google Scholar 

  • Nilsson L, Huss HH, Gram L (1997) Inhibition of Listeria monocytogenes on cold-smoked salmon by nisin and carbon dioxide atmosphere. Int J Food Microbiol 38(2–3):217–227

    Article  CAS  Google Scholar 

  • Nilsson L, Gram L, Huss HH (1999) Growth control of Listeria monocytogenes on cold-smoked salmon using a competitive lactic acid bacteria flora. J Food Prot 62(4):336–342

    CAS  Google Scholar 

  • Norhana MNW, Poole SE, Deeth HC, Dykes GA (2010) Prevalence, persistence and control of Salmonella and Listeria in shrimp and shrimp products: a review. Food Control 21(4): 343–361

    Article  Google Scholar 

  • Nychas G-JE, Drosinos EH, Board RG (1998) Chemical changes in stored meat. In: Davies AR, Board RG (eds) Microbiology of meat and poultry. Springer, New York, pp 288–327

    Google Scholar 

  • Olafsdottir G, Martinsdóttir E, Oehlenschläger J, Dalgaard P, Jensen B, Undeland I, Mackie IM, Henehan G, Nielsen J, Nilsen H (1997) Methods to evaluate fish freshness in research and industry. Trends Food Sci Technol 8(8):258–265

    Article  CAS  Google Scholar 

  • Picchietti S, Mazzini M, Taddei AR, Renna R, Fausto AM, Mulero V, Carnevali O, Cresci A, Abelli L (2007) Effects of administration of probiotic strains on GALT of larval gilthead seabream: immunohistochemical and ultrastructural studies. Fish Shellfish Immunol 22(1):57–67

    Article  CAS  Google Scholar 

  • Ponce E, Khan AA, Cheng C-M, Summage-West C, Cerniglia CE (2008) Prevalence and characterization of Salmonella enterica serovar Weltevreden from imported seafood. Food Microbiol 25(1):29–35

    Article  CAS  Google Scholar 

  • Rasmussen SKJ, Ross T, Olley J, McMeekin T (2002) A process risk model for the shelf life of Atlantic salmon fillets. Int J Food Microbiol 73(1):47–60

    Article  CAS  Google Scholar 

  • Ringø E (1993) The effect of chromic oxide (Cr2O3) on aerobic bacterial populations associated with the intestinal epithelial mucosa of Arctic charr, Salvelinus alpinus (L.). Can J Microbiol 39(12):1169–1173

    Article  Google Scholar 

  • Ringø E (2008) The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: a screening study. Aqua Res 39(2):171–180

    Article  Google Scholar 

  • Ringo E, Birkbeck TH (1999) Intestinal microflora of fish larvae and fry. Aqua Res 30(2):73–93

    Article  Google Scholar 

  • Ringø E, Gatesoupe FJ (1998) Lactic acid bacteria in fish: a review. Aquaculture 160(3):177–203

    Article  Google Scholar 

  • Ringø E, Strøm E (1994) Microflora of Arctic charr, Salvelinus alpinus (L.): gastrointestinal microflora of free-living fish and effect of diet and salinity on intestinal microflora. Aqua Res 25(6):623–629

    Article  Google Scholar 

  • Ringø E, Strøm E, Tabachek J-A (1995) Intestinal microflora of salmonids: a review. Aqua Res 26(10):773–789

    Article  Google Scholar 

  • Ringø E, Birkbeck TH, Munro PO, Vadstein O, Hjelmeland K (1996) The effect of early exposure to Vibrio pelagius on the aerobic bacterial flora of turbot, Scophthalmus maximus (L.) larvae. J Appl Microbiol 81(2):207–211

    Google Scholar 

  • Ringø E, Olsen RE, Øverli Ø, Løvik F (1997) Effect of dominance hierarchy formation on aerobic microbiota associated with epithelial mucosa of subordinate and dominant individuals of Arctic charr, Salvelinus alpinus (L.). Aqua Res 28(11):901–904

    Article  Google Scholar 

  • Ringø E, Wesmajervi MS, Bendiksen HR, Berg A, Olsen RE, Johnsen T, Mikkelsen H, Seppola M, Strøm E, Holzapfel W (2001) Identification and characterization of carnobacteria isolated from fish intestine. Syst Appl Microbiol 24(2):183–191

    Article  Google Scholar 

  • Ringø E, Løvmo L, Kristiansen M, Bakken Y, Salinas I, Myklebust R, Olsen RE, Mayhew TM (2010) Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aqua Res 41(4):451–467

    Article  Google Scholar 

  • Robertson PAW, O’Dowd C, Burrells C, Williams P, Austin B (2000) Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185(3–4):235–243

    Article  Google Scholar 

  • Rombout JHWM, Stroband HWJ, Taverne-Thiele JJ (1984) Proliferation and differentiation of intestinal epithelial cells during development of Barbus conchonius (Teleostei, Cyprinidae). Cell Tissue Res 236(1):207–216

    Article  CAS  Google Scholar 

  • Schrøder K, Clausen E, Sandberg AM, Raa J (1980) Psychrotrophic Lactobacillus plantarum from fish and its ability to produce antibiotic substances. Adv Fish Sci Technol 148:480–483

    Google Scholar 

  • Seppola M, Olsen RE, Sandaker E, Kanapathippillai P, Holzapfel W, Ringø E (2006) Random amplification of polymorphic DNA (RAPD) typing of carnobacteria isolated from hindgut chamber and large intestine of Atlantic cod (Gadus morhua L.). Syst Appl Microbiol 29(2):131–137

    Article  CAS  Google Scholar 

  • Shabarinath S, Sanath Kumar H, Khushiramani R, Karunasagar I, Karunasagar I (2007) Detection and characterization of Salmonella associated with tropical seafood. Int J Food Microbiol 114(2):227–233

    Article  CAS  Google Scholar 

  • Shewan JM (1971) The microbiology of fish and fishery products—a progress report. J Appl Microbiol 34(2):299–315

    CAS  Google Scholar 

  • Spanggaard B, Huber I, Nielsen J, Nielsen T, Appel KF, Gram L (2000) The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture 182(1): 1–15

    Article  CAS  Google Scholar 

  • Strøm E, Olafsen JA (1990) The indigenous microflora of wild-captured juvenile cod in net-pen rearing. In: Lesel R (ed) Microbiology of poecilotherms. Elsevier, Amsterdam, pp 181–185

    Google Scholar 

  • Suyehiro Y, Kaigi GK (1941) A study on the digestive system and feeding habits of fish. National Research Council of Japan, Tokyo

    Google Scholar 

  • Twomey D, Ross RP, Ryan M, Meaney B, Hill C (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82(1–4):165–185

    Article  CAS  Google Scholar 

  • Wallbanks S, Martinez-Murcia AJ, Fryer JL, Phillips BA, Collins MD (1990) 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov. Int J Syst Bacteriol 40(3):224–230

    Article  CAS  Google Scholar 

  • Williams AM, Fryer JL, Collins MD (1990) Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol Lett 68(1–2):109–113

    Article  CAS  Google Scholar 

  • Wilson B, Danilowicz BS, Meijer WG (2008) The diversity of bacterial communities associated with Atlantic cod Gadus morhua. Microbial Ecol 55(3):425–434

    Article  Google Scholar 

  • Yang G, Bao B, Peatman E, Li H, Huang L, Ren D (2007) Analysis of the composition of the bacterial community in puffer fish Takifugu obscurus. Aquaculture 262(2–4):183–191

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Marine Bioprocess Research Center as a part of the Marine Biotechnology Project funded by the Ministry of Land, Transport and Maritime Affairs, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manivasagan, P., Venkatesan, J., Kim, SK. (2014). Potential Uses of Lactic Acid Bacteria in Seafood Products. In: Kim, SK. (eds) Seafood Processing By-Products. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9590-1_16

Download citation

Publish with us

Policies and ethics