Skip to main content

Association Between Oxidative Stress and Periodontal Diseases in Animal Model Studies

  • Chapter
  • First Online:
Studies on Periodontal Disease

Abstract

Animal models have contributed new knowledge to biological sciences, including periodontology. Rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontal disease is commonly induced by placing a bacterial plaque-retentive ligature, by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis), or by applying virulence factors, such as lipopolysaccharide. A number of animal models of periodontitis support the notion that reactive oxygen species play a critical role in periodontitis. In this chapter, we summarize the characteristics of each animal model, their advantages, and the association between oxidative stress and periodontitis in animal model studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Page RC, Engel LD, Narayanan AS, Clagett JA (1978) Chronic inflammatory gingival and periodontal disease. JAMA 240:545–550

    CAS  PubMed  Google Scholar 

  2. Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366:1809–1820

    PubMed  Google Scholar 

  3. Ekuni D, Tomofuji T, Yamanaka R, Tachibana K, Yamamoto T, Watanabe T (2005) Initial apical migration of junctional epithelium in rats following application of lipopolysaccharide and proteases. J Periodontol 76:43–48

    PubMed  Google Scholar 

  4. Madianos PN, Bobetsis YA, Kinane DF (2005) Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva. J Clin Periodontol 32:57–71

    CAS  PubMed  Google Scholar 

  5. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1988) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144

    Google Scholar 

  6. Van Dyke TE (2007) Cellular and molecular susceptibility determinants for periodontitis. Periodontol 2000 45:10–13

    PubMed  Google Scholar 

  7. Yoon SO, Park SJ, Yoon SY, Yun CH, Chung AS (2002) Sustained production of H(2)O(2) activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. J Biol Chem 277:30271–30282

    CAS  PubMed  Google Scholar 

  8. Zaragoza C, Lopez-Rivera E, Garcia-Rama C, Saura M, Martinez-Ruiz A, Lizarbe TR, Martin-de-Lara F, Lamas S (2006) Cbfa-1 mediates nitric oxide regulation of MMP-13 in osteoblasts. J Cell Sci 119:1896–1902

    CAS  PubMed  Google Scholar 

  9. Chapple IL (1997) Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24:287–296

    CAS  PubMed  Google Scholar 

  10. Akalın FA, Baltacıoğlu E, Alver A, Karabulut E (2007) Lipid peroxidation levels and total oxidant status in serum, saliva and gingival crevicular fluid in patients with chronic periodontitis. J Clin Periodontol 34:558–565

    PubMed  Google Scholar 

  11. Hyslop PA, Hinshaw DB, Scraufstatter IU, Cochrane CG, Kunz S, Vosbeck K (1995) Hydrogen peroxide as a potent bacteriostatic antibiotic: implications for host defense. Free Radic Biol Med 19:31–37

    CAS  PubMed  Google Scholar 

  12. Fialkow L, Wang Y, Downey GP (2007) Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42:153–164

    CAS  PubMed  Google Scholar 

  13. Valko M, Leibffritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    CAS  PubMed  Google Scholar 

  14. Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause or consequence. Lancet 344:721–724

    CAS  PubMed  Google Scholar 

  15. Chapple IL, Brock GR, Milward MR, Ling N, Matthews JB (2007) Compromised GCF total antioxidant capacity in periodontitis: cause or effect? J Clin Periodontol 34:103–110

    CAS  PubMed  Google Scholar 

  16. Tsai CC, Chen HS, Chen SL, Ho YP, Ho KY, Wu YM, Hung CC (2005) Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 40:378–384

    CAS  PubMed  Google Scholar 

  17. Abou Sulaiman AE, Shehadeh RM (2010) Assessment of total antioxidant capacity and the use of vitamin C in the treatment of non-smokers with chronic periodontitis. J Periodontol 81:1547–1554

    CAS  PubMed  Google Scholar 

  18. Barnes VM, Teles R, Trivedi HM, Devizio W, Xu T, Lee DP, Mitchell MW, Wulff JE, Milburn MV, Guo L (2010) Assessment of the effects of dentifrice on periodontal disease biomarkers in gingival crevicular fluid. J Periodontol 81:1273–1279

    CAS  PubMed  Google Scholar 

  19. Tomofuji T, Azuma T, Kusano H, Sanbe T, Ekuni D, Tamaki N, Yamamoto T, Watanabe T (2006) Oxidative damage of periodontal tissue in the rat periodontitis model: effects of a high-cholesterol diet. FEBS Lett 580:3601–3604

    CAS  PubMed  Google Scholar 

  20. Maruyama T, Tomofuji T, Endo Y, Irie K, Azuma T, Ekuni D, Tamaki N, Yamamoto T, Morita M (2011) Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation. Arch Oral Biol 56:48–53

    CAS  PubMed  Google Scholar 

  21. Ekuni D, Tomofuji T, Tamaki N, Sanbe T, Azuma T, Yamanaka R, Yamamoto T, Watanabe T (2008) Mechanical stimulation of gingiva reduces plasma 8-OHdG level in rat periodontitis. Arch Oral Biol 53:324–329

    CAS  PubMed  Google Scholar 

  22. Ekuni D, Firth JD, Nayer T, Tomofuji T, Sanbe T, Irie K, Yamamoto T, Oka T, Liu Z, Vielkind J, Putnins EE (2009) Lipopolysaccharide-induced epithelial monoamine oxidase mediates alveolar bone loss in a rat chronic wound model. Am J Pathol 175:1398–1409

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Oz HS, Puleo DA (2011) Animal models for periodontal disease. J Biomed Biotechnol 99:102–110

    Google Scholar 

  24. Graves DT, Kang J, Andriankaja O, Wada K, Rossa C Jr (2012) Animal models to study host-bacteria interactions involved in periodontitis. Front Oral Biol 15:117–132

    PubMed Central  PubMed  Google Scholar 

  25. Weinberg MA, Bral M (1999) Laboratory animal models in periodontology. J Clin Periodontol 26:335–340

    CAS  PubMed  Google Scholar 

  26. Albuquerque C, Morinha F, Requicha J, Martins T, Dias I, Guedes-Pinto H, Bastos E, Viegas C (2012) Canine periodontitis: the dog as an important model for periodontal studies. Vet J 191:299–305

    PubMed  Google Scholar 

  27. Schou S, Holmstrup P, Kornman KS (1993) Non-human primates used in studies of periodontal disease pathogenesis: a review of the literature. J Periodontol 64:497–508

    CAS  PubMed  Google Scholar 

  28. Miller DR, Aufdemorte TB, Fox WC, Waldrop TC, Mealey BL, Brunsvold MA (1995) Periodontitis in the baboon: a potential model for human disease. J Periodontal Res 30:404–409

    CAS  PubMed  Google Scholar 

  29. Caton J, Mota L, Gandini L, Laskaris B (1994) Non-human primate models for testing the efficacy and safety of periodontal regeneration procedures. J Periodontol 65:1143–1150

    CAS  PubMed  Google Scholar 

  30. Fritz ME, Braswell LD, Koth D, Jeffcoat M, Reddy M, Cotsonis G (1997) Experimental peri-implantitis in consecutively placed, loaded root-form and plate-form implants in adult Macaca mulatta monkeys. J Periodontol 68:1131–1135

    CAS  PubMed  Google Scholar 

  31. Brecx MC, Nalbandian J, Ooya K, Kornman KS, Robertson PB (1985) Morphological studies on periodontal disease in the cynomolgus monkey. II. Light microscopic observations on ligature induced periodontitis. J Periodontal Res 20:165–175

    CAS  PubMed  Google Scholar 

  32. Kornman KS, Holt SC, Robertson PB (1981) The microbiology of ligature-induced periodontitis in the cynomolgus monkey. J Periodontal Res 16:363–371

    CAS  PubMed  Google Scholar 

  33. Listgarten M, Ellegaard B (1973) Experimental gingivitis in the monkey. J Periodontal Res 8:199–214

    CAS  PubMed  Google Scholar 

  34. Page R, Schroeder H (1982) Periodontitis in man and other animals. A comparative review. Basel, Karger, pp 57–202, 222–239, 272

    Google Scholar 

  35. Madden TE, Caton JG (1994) Animal models for periodontal disease. Methods Enzymol 235:106–119

    CAS  PubMed  Google Scholar 

  36. Pavlica Z, Petelin M, Nemec A, Erzen D, Skaleric U (2004) Measurement of total antioxidant capacity in gingival crevicular fluid and serum in dogs with periodontal disease. Am J Vet Res 65:1584–1588

    PubMed  Google Scholar 

  37. Wikesjö UM, Kean CJ, Zimmerman GJ (1994) Periodontal repair in dogs: supraalveolar defect models for evaluation of safety and efficacy of periodontal reconstructive therapy. J Periodontol 65:1151–1157

    PubMed  Google Scholar 

  38. Egelberg J (1965) Local effect of diet on plaque formation and development of gingivitis in dogs. I. Effect of hard and soft diets. Odontol Revy 16:31–41

    CAS  PubMed  Google Scholar 

  39. Hamp SE, Lindhe J, Löe H (1973) Experimental periodontitis in the beagle dog. J Periodontal Res 10:13–14

    Google Scholar 

  40. Hamp SE, Lindberg R (1977) Histopathology of spontaneous periodontitis in dogs. J Periodontal Res 12:46–54

    CAS  PubMed  Google Scholar 

  41. Sorensen WP, Löe H, Ramfjord SP (1980) Periodontal disease in the beagle dog. A cross sectional clinical study. J Periodontal Res 15:380–389

    CAS  PubMed  Google Scholar 

  42. Lund EM, Armstrong PJ, Kirk CA, Kolar LM, Klausner JS (1999) Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J Am Vet Med Assoc 214:1336–1341

    CAS  PubMed  Google Scholar 

  43. Kwon DH, Bennett W, Herberg S, Bastone P, Pippig S, Rodriguez NA, Susin C, Wikesjö UM (2010) Evaluation of an injectable rhGDF-5/PLGA construct for minimally invasive periodontal regenerative procedures: a histological study in the dog. J Clin Periodontol 37:390–397

    CAS  PubMed  Google Scholar 

  44. Page RC, Schroeder HE (1981) Spontaneous chronic periodontitis in adult dogs: a clinical and histopathological survey. J Periodontol 52:60–73

    CAS  PubMed  Google Scholar 

  45. Struillou X, Boutigny H, Soueidan A, Layrolle P (2010) Experimental animal models in periodontology: a review. Open Dent J 4:37–47

    PubMed Central  PubMed  Google Scholar 

  46. Matsson L, Attström R (1979) Histologic characteristics of experimental gingivitis in the juvenile and adult beagle dog. J Clin Periodontol 6:334–350

    CAS  PubMed  Google Scholar 

  47. Kornman KS, Siegrist B, Soskolne WA, Nuki K (1981) The predominant cultivable subgingival flora and beagle dogs following ligature placement and metronidazole therapy. J Periodontal Res 16:251–258

    CAS  PubMed  Google Scholar 

  48. Giannobile WV, Finkelman RD, Lynch SE (1994) Comparison of canine and non-human primate animal models for periodontal regenerative therapy. Result following a single administration of PDGF/IGF-I. J Periodontol 65:1158–1168

    CAS  PubMed  Google Scholar 

  49. Genco CA, Van Dyke T, Amar S (1998) Animal models for Porphyromonas gingivalis-mediated periodontal disease. Trends Microbiol 6:444–449

    CAS  PubMed  Google Scholar 

  50. Listgarten MA (1975) Similarity of epithelial relationships in the gingiva of rat and man. J Periodontol 46:677–680

    CAS  PubMed  Google Scholar 

  51. Socransky SS, Hubersak C, Propas D (1970) Induction of periodontal destruction in gnotobiotic rats by a human oral strain of Actinomyces naeslundii. Arch Oral Biol 15:993–995

    CAS  PubMed  Google Scholar 

  52. Taubman MA, Stoufi ED, Seymour GJ, Smith DJ, Ebersole JL (1988) Immunoregulatory aspects of periodontal disease. Adv Dent Res 2:328–333

    CAS  PubMed  Google Scholar 

  53. Yamashita K, Eastcott JW, Taubman MA, Smith DJ, Cox DS (1991) Effect of adoptive transfer of cloned Actinobacillus actinomycetemcomitans-specific T helper cells on periodontal disease. Infect Immun 59:1529–1534

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Taubman MA, Yoshie H, Wetherell JR Jr, Ebersole JL, Smith DJ (1983) Immune response and periodontal bone loss in germfree rats immunized and infected with Actinobacillus actinomycetemcomitans. J Periodontal Res 18:393–401

    CAS  PubMed  Google Scholar 

  55. Roeterink CH, van Steenbergen TJ, de Jong WF, de Graaff J (1984) Histopathological effects in the palate of the rat induced by injection with different black-pigmented Bacteroides strains. J Periodontal Res 19:292–302

    CAS  PubMed  Google Scholar 

  56. Evans RT, Klausen B, Ramamurthy NS, Golub LM, Sfintescu C, Genco RJ (1992) Periodontopathic potential of two strains of Porphyromonas gingival is in gnotobiotic rats. Arch Oral Biol 37:813–819

    CAS  PubMed  Google Scholar 

  57. Klausen B, Sfintescu C, Evans RT (1991) Asymmetry in periodontal bone loss of gnotobiotic Sprague–Dawley rats. Arch Oral Biol 36:685–687

    CAS  PubMed  Google Scholar 

  58. Breivik T, Opstad PK, Gjermo P, Thrane PS (2000) Effects of hypothalamic–pituitary–adrenal axis reactivity on periodontal tissue destruction in rats. Eur J Oral Sci 108:115–122

    CAS  PubMed  Google Scholar 

  59. Nakajima K, Hamada N, Takahashi Y, Sasaguri K, Tsukinoki K, Umemoto T, Sato S (2006) Restraint stress enhances alveolar bone loss in an experimental rat model. J Periodontal Res 41:527–534

    CAS  PubMed  Google Scholar 

  60. Ekuni D, Yamamoto T, Yamanaka R, Tachibana K, Watanabe T (2003) Proteases augment the effects of lipopolysaccharide in rat gingiva. J Periodontal Res 38:591–596

    CAS  PubMed  Google Scholar 

  61. Irving JT, Socransky SS, Heeley JD (1974) Histological changes in experimental periodontal disease in gnotobiotic rats and conventional hamsters. J Periodontal Res 9:73–80

    CAS  PubMed  Google Scholar 

  62. Heijl L, Wennstrom J, Lindhe J, Socransky SS (1980) Periodontal disease in gnotobiotic rats. J Periodontal Res 15:405–419

    CAS  PubMed  Google Scholar 

  63. Baker PJ, Evans RT, Roopenian DC (1994) Oral infection with Porphyromonas gingivalis and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice. Arch Oral Biol 39:1035–1040

    CAS  PubMed  Google Scholar 

  64. Pierce DL, Nishiyama S, Liang S, Wang M, Triantafilou M, Triantafilou K, Yoshimura F, Demuth DR, Hajishengallis G (2009) Host adhesive activities and virulence of novel fimbrial proteins of Porphyromonas gingivalis. Infect Immun 77:3294–3301

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Novak EA, Shao H, Daep CA, Demuth DR (2010) Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans. Infect Immun 78:2919–2926

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Polak D, Wilensky A, Shapira L, Halabi A, Goldstein D, Weiss EI, Houri-Haddad Y (2009) Mouse model of experimental periodontitis induced by Porphyromonas gingivalis Fusobacterium nucleatum infection: bone loss and host response. J Clin Periodontol 36:406–410

    PubMed  Google Scholar 

  67. Kinane DF, Hajishengallis G (2009) Polymicrobial infections, biofilms, and beyond. J Clin Periodontol 36:404–405

    PubMed  Google Scholar 

  68. Oz HS, Ebersole JL (2010) A novel murine model for chronic inflammatory alveolar bone loss. J Periodontal Res 45:94–99

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Oz HS, Chen T, Ebersole JL (2010) A model for chronic mucosal inflammation in IBD and periodontitis. Dig Dis Sci 55:2194–2202

    PubMed  Google Scholar 

  70. Sasaki H, Okamatsu Y, Kawai T, Kent R, Taubman M, Stashenko P (2004) The interleukin-10 knockout mouse is highly susceptible to Porphyromonas gingivalis-induced alveolar bone loss. J Periodontal Res 39:432–441

    CAS  PubMed  Google Scholar 

  71. Fine DH (2009) Of mice and men: animal models of human periodontal disease. J Clin Periodontol 36:913–914

    PubMed  Google Scholar 

  72. Hojo K, Tamura A, Mizoguchi C, Kato D, Ohshima T, Maeda N (2008) Predominant bacteria recovered from a periodontitis site in a hamster model raised by silk-ligature with Porphyromonas gingivalis infection. Biosci Biotechnol Biochem 72:1348–1351

    CAS  PubMed  Google Scholar 

  73. Jordan HV, Keyes PH (1964) Aerobic, grampositive, filamentous bacteria as etiologic agents of experimental periodontal disease in Hamsters. Arch Oral Biol 9:401–414

    CAS  PubMed  Google Scholar 

  74. Baron R, Saffar JL (1978) A quantitative study of bone remodeling during experimental periodontal disease in the golden hamster. J Periodontal Res 13:309–315

    CAS  PubMed  Google Scholar 

  75. Miller WA, Ripley JF (1975) Early periodontal disease in the Syrian hamster. J Periodontol 46:368–374

    CAS  PubMed  Google Scholar 

  76. Tyrrell KL, Citron DM, Jenkins JR, Goldstein EJ (2002) Periodontal bacteria in rabbit mandibular and maxillary abscesses. J Clin Microbiol 40:1044–1047

    PubMed Central  PubMed  Google Scholar 

  77. Hasturk H, Kantarci A, Goguet-Surmenian E, Blackwood A, Andry C, Serhan CN, Van Dyke TE (2007) Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol 179:7021–7029

    CAS  PubMed  Google Scholar 

  78. Lang H, Schüler N, Nolden R (1998) Attachment formation following replantation of cultured cells into periodontal defects – a study in minipigs. J Dent Res 77:393–405

    CAS  PubMed  Google Scholar 

  79. Wang S, Liu Y, Fang D, Shi S (2007) The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis 13:530–537

    CAS  PubMed  Google Scholar 

  80. Singh G, O’Neal RB, Brennan WA, Strong SL, Horner JA, Van Dyke TE (1993) Surgical treatment of induced peri-implantitis in the micro pig: clinical and histological analysis. J Periodontol 64:984–989

    CAS  PubMed  Google Scholar 

  81. King JD, Gimson AP (1947) Experimental investigations of periodontal disease in the ferret and related lesions in man. Br Dent J 83:126

    CAS  PubMed  Google Scholar 

  82. Fischer RG, Klinge B (1994) Clinical and histological evaluation of ligature-induced periodontitis in the domestic ferret. J Clin Periodontol 21:230–239

    CAS  PubMed  Google Scholar 

  83. Harper DS, Mann PH, Regnier S (1990) Measurement of dietary and dentifrice effects upon calculus accumulation rates in the domestic ferret. J Dent Res 69:447–450

    CAS  PubMed  Google Scholar 

  84. Duncan WJ, Persson GR, Sims TJ, Braham P, Pack AR, Page RC (2003) Ovine periodontitis as a potential model for periodontal studies. Cross-sectional analysis of clinical, microbiological, and serum immunological parameters. J Clin Periodontol 30:63–72

    CAS  PubMed  Google Scholar 

  85. Danesh-Meyer MJ, Pack AR, McMillan MD (1997) A comparison of 2 polytetrafluoroethylene membranes in guided tissue regeneration in sheep. J Periodontal Res 32:20–30

    CAS  PubMed  Google Scholar 

  86. Al-Qareer AH, Afsah MR, Müller HP (2004) A sheep cadaver model for demonstration and training periodontal surgical methods. Eur J Dent Educ 8:78–83

    PubMed  Google Scholar 

  87. Chapple IL, Matthews JB (2007) The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000 43:160–232

    PubMed  Google Scholar 

  88. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Tomofuji T, Ekuni D, Irie K, Azuma T, Tamaki N, Maruyama T, Yamamoto T, Watanabe T, Morita M (2011) Relationships between periodontal inflammation, lipid peroxide and oxidative damage of multiple organs in rats. Biomed Res 32:343–349

    CAS  PubMed  Google Scholar 

  90. Tomofuji T, Ekuni D, Irie K, Azuma T, Endo Y, Tamaki N, Sanbe T, Murakami J, Yamamoto T, Morita M (2009) Preventive effects of a cocoa-enriched diet on gingival oxidative stress in experimental periodontitis. J Periodontol 80:1799–1808

    CAS  PubMed  Google Scholar 

  91. Tomofuji T, Yamamoto T, Tamaki N, Ekuni D, Azuma T, Sanbe T, Irie K, Kasuyama K, Umakoshi M, Murakami J, Kokeguchi S, Morita M (2009) Effects of obesity on gingival oxidative stress in a rat model. J Periodontol 80:1324–1329

    CAS  PubMed  Google Scholar 

  92. Ekuni D, Tomofuji T, Sanbe T, Irie K, Azuma T, Maruyama T, Tamaki N, Murakami J, Kokeguchi S, Yamamoto T (2009) Periodontitis-induced lipid peroxidation in rat descending aorta is involved in the initiation of atherosclerosis. J Periodontal Res 44:434–442

    CAS  PubMed  Google Scholar 

  93. de Menezes AM, de Souza GF, Gomes AS, de Carvalho Leitão RF, Ribeiro Rde A, de Oliveira MG, de Castro Brito GA (2012) S-nitrosoglutathione decreases inflammation and bone resorption in experimental periodontitis in rats. J Periodontol 83:514–521

    PubMed  Google Scholar 

  94. Paola RD, Oteri G, Mazzon E, Crisafulli C, Galuppo M, Toso RD, Pressi G, Cordasco G, Cuzzocrea S (2011) Effects of verbascoside, biotechnologically purified by Syringa vulgaris plant cell cultures, in a rodent model of periodontitis. J Pharm Pharmacol 63:707–717

    CAS  PubMed  Google Scholar 

  95. Holanda Pinto SA, Pinto LM, Cunha GM, Chaves MH, Santos FA, Rao VS (2008) Anti-inflammatory effect of alpha, beta-Amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis. Inflammopharmacology 16:48–52

    CAS  PubMed  Google Scholar 

  96. Di Paola R, Mazzon E, Maiere D, Zito D, Britti D, De Majo M, Genovese T, Cuzzocrea S (2006) Rosiglitazone reduces the evolution of experimental periodontitis in the rat. J Dent Res 85:156–161

    PubMed  Google Scholar 

  97. Di Paola R, Mazzon E, Zito D, Maiere D, Britti D, Genovese T, Cuzzocrea S (2005) Effects of Tempol, a membrane-permeable radical scavenger, in a rodent model periodontitis. J Clin Periodontol 32:1062–1068

    PubMed  Google Scholar 

  98. Di Paola R, Marzocco S, Mazzon E, Dattola F, Rotondo F, Britti D, De Majo M, Genovese T, Cuzzocrea S (2004) Effect of aminoguanidine in ligature-induced periodontitis in rats. J Dent Res 83:343–348

    PubMed  Google Scholar 

  99. Nishikawa T, Naruse K, Kobayashi Y, Miyajima S, Mizutani M, Kikuchi T, Soboku K, Nakamura N, Sokabe A, Tosaki T, Hata M, Ohno N, Noguchi T, Matsubara T (2012) Involvement of nitrosative stress in experimental periodontitis in diabetic rats. J Clin Periodontol 39:342–349

    CAS  PubMed  Google Scholar 

  100. Lohinai Z, Benedek P, Fehér E, Györfi A, Rosivall L, Fazekas A, Salzman AL, Szabó C (1998) Protective effects of mercaptoethylguanidine, a selective inhibitor of inducible nitric oxide synthase, in ligature-induced periodontitis in the rat. Br J Pharmacol 123:353–360

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Sobaniec H, Sobaniec-Lotowska ME (2000) Morphological examinations of hard tissues of periodontium and evaluation of selected processes of lipid peroxidation in blood serum of rats in the course of experimental periodontitis. Med Sci Monit 6:875–881

    CAS  PubMed  Google Scholar 

  102. Tomofuji T, Sanbe T, Ekuni D, Azuma T, Irie K, Maruyama T, Tamaki N, Yamamoto T (2008) Oxidative damage of rat liver induced by ligature-induced periodontitis and chronic ethanol consumption. Arch Oral Biol 53:1113–1118

    CAS  PubMed  Google Scholar 

  103. Mousavi-Jazi M, Aslroosta H, Moayer AR, Baeeri M, Abdollahi M (2010) Effects of Angipars on oxidative inflammatory indices in a murine model of periodontitis. Daru 18:260–264

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Gelani V, Fernandes AP, Gasparoto TH, Garlet TP, Cestari TM, Lima HR, Ramos ES, de Souza Malaspina TS, Santos CF, Garlet GP, da Silva JS, Campanelli AP (2009) The role of toll-like receptor 2 in the recognition of Aggregatibacter actinomycetemcomitans. J Periodontol 80:2010–2019

    CAS  PubMed  Google Scholar 

  105. Kato C, Mikami M, Saito K (2001) Nitric oxide production and iNOS mRNA expression in mice induced by repeated stimulation with live Fusobacterium nucleatum. Microbiol Immunol 45:69–78

    CAS  PubMed  Google Scholar 

  106. Gyurko R, Boustany G, Huang PL, Kantarci A, Van Dyke TE, Genco CA, Gibson FC 3rd (2003) Mice lacking inducible nitric oxide synthase demonstrate impaired killing of Porphyromonas gingivalis. Infect Immun 71:4917–4924

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Gyurko R, Shoji H, Battaglino RA, Boustany G, Gibson FC 3rd, Genco CA, Stashenko P, Van Dyke TE (2005) Inducible nitric oxide synthase mediates bone development and P. gingivalis-induced alveolar bone loss. Bone 36:472–479

    CAS  PubMed  Google Scholar 

  108. Nemec A, Pavlica Z, Crossley DA, Sentjurc M, Jerin A, Erzen D, Vrecl M, Majdic G, Zdovc I, Petelin M, Skaleric U (2009) Chronic ingestion of Porphyromonas gingivalis induces systemic nitric oxide response in mice. Oral Microbiol Immunol 24:204–210

    CAS  PubMed  Google Scholar 

  109. Nemec A, Pavlica Z, Petelin M, Crossley DA, Sentjurc M, Jerin A, Erzen D, Zdovc I, Hitti T, Skaleric U (2010) Systemic use of selective iNOS inhibitor 1400W or non-selective NOS inhibitor l-NAME differently affects systemic nitric oxide formation after oral Porphyromonas gingivalis inoculation in mice. Arch Oral Biol 55:509–514

    CAS  PubMed  Google Scholar 

  110. Ohnishi T, Bandow K, Kakimoto K, Machigashira M, Matsuyama T, Matsuguchi T (2009) Oxidative stress causes alveolar bone loss in metabolic syndrome model mice with type 2 diabetes. J Periodontal Res 44:43–51

    CAS  PubMed  Google Scholar 

  111. Tomofuji T, Ekuni D, Sanbe T, Irie K, Azuma T, Maruyama T, Tamaki N, Murakami J, Kokeguchi S, Yamamoto T (2009) Effects of vitamin C intake on gingival oxidative stress in rat periodontitis. Free Radic Biol Med 46:163–168

    CAS  PubMed  Google Scholar 

  112. Parrish JH Jr, DeMarco TJ, Bissada NF (1977) Vitamin E and periodontitis in the rat. Oral Surg Oral Med Oral Pathol 44:210–218

    CAS  PubMed  Google Scholar 

  113. Battino M, Bullon P, Wilson M, Newman H (1999) Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Crit Rev Oral Biol Med 10:458–476

    CAS  PubMed  Google Scholar 

  114. Rice-Evans C (1999) Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc Soc Exp Biol Med 220:262–266

    CAS  PubMed  Google Scholar 

  115. Ramiro-Puig E, Castell M (2009) Cocoa: antioxidant and immunomodulator. Br J Nutr 101:931–940

    CAS  PubMed  Google Scholar 

  116. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383

    CAS  PubMed  Google Scholar 

  117. Govindaraj J, Emmadi P, Deepalakshmi, Rajaram V, Prakash G, Puvanakrishnan R (2010) Protective effect of proanthocyanidins on endotoxin induced experimental periodontitis in rats. Indian J Exp Biol 48:133–142

    CAS  PubMed  Google Scholar 

  118. Kubo M, Matsuda H, Tanaka M, Kimura Y, Okuda H, Higashino M, Tani T, Namba K, Arichi S (1984) Studies on Scutellariae radix. VII. Anti-arthritic and anti-inflammatory actions of methanolic extract and flavonoid components from Scutellariae radix. Chem Pharm Bull (Tokyo) 32:2724–2729

    CAS  Google Scholar 

  119. Cai X, Li C, Du G, Cao Z (2008) Protective effects of baicalin on ligature-induced periodontitis in rats. J Periodontal Res 43:14–21

    CAS  PubMed  Google Scholar 

  120. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694

    CAS  PubMed  Google Scholar 

  121. Kasuyama K, Tomofuji T, Ekuni D, Tamaki N, Azuma T, Irie K, Endo Y, Morita M (2011) Hydrogen-rich water attenuates experimental periodontitis in a rat model. J Clin Periodontol 38:1085–1090

    CAS  PubMed  Google Scholar 

  122. Ozdemir H, Kara MI, Erciyas K, Ozer H, Ay S (2012) Preventive effects of thymoquinone in a rat periodontitis model: a morphometric and histopathological study. J Periodontal Res 47:74–80

    CAS  PubMed  Google Scholar 

  123. Feng R, Lu Y, Bowman LL, Qian Y, Castranova V, Ding M (2005) Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem 280:27888–27895

    CAS  PubMed  Google Scholar 

  124. Dar A, Faizi S, Naqvi S, Roome T, Zikr-ur-Rehman S, Ali M, Firdous S, Moin ST (2005) Analgesic and antioxidant activity of mangiferin and its derivatives: the structure activity relationship. Biol Pharm Bull 28:596–600

    CAS  PubMed  Google Scholar 

  125. Duang XY, Wang Q, Zhou XD, Huang DM (2011) Mangiferin: a possible strategy for periodontal disease to therapy. Med Hypotheses 76:486–488

    CAS  PubMed  Google Scholar 

  126. Bracken WM, Cuppage F, McLaury RL, Kirwin C, Klaassen CD (1985) Comparative effectiveness of topical treatments for hydrofluoric acid burns. J Occup Med 27:733–739

    CAS  PubMed  Google Scholar 

  127. Ku SK, Cho HR, Sung YS, Kang SJ, Lee YJ (2011) Effects of calcium gluconate on experimental periodontitis and alveolar bone loss in rats. Basic Clin Pharmacol Toxicol 108:241–250

    CAS  PubMed  Google Scholar 

  128. Herrera BS, Martins-Porto R, Maia-Dantas A, Campi P, Spolidorio LC, Costa SK, Van Dyke TE, Gyurko R, Muscara MN (2011) iNOS-derived nitric oxide stimulates osteoclast activity and alveolar bone loss in ligature-induced periodontitis in rats. J Periodontol 82:1608–1615

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Paquette DW, Rosenberg A, Lohinai Z, Southan GJ, Williams RC, Offenbacher S, Szabó C (2006) Inhibition of experimental gingivitis in beagle dogs with topical mercaptoalkylguanidines. J Periodontol 77:385–391

    CAS  PubMed  Google Scholar 

  130. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  131. Kador PF, O’Meara JD, Blessing K, Marx DB, Reinhardt RA (2011) Efficacy of structurally diverse aldose reductase inhibitors on experimental periodontitis in rats. J Periodontol 82:926–933

    CAS  PubMed  Google Scholar 

  132. Gokcimen A, Cim A, Tola HT, Bayram D, Kocak A, Ozgüner F, Ayata A (2007) Protective effect of N-acetylcysteine, caffeic acid and vitamin E on doxorubicin hepatotoxicity. Hum Exp Toxicol 26:519–525

    CAS  PubMed  Google Scholar 

  133. Toker H, Ozdemir H, Eren K, Ozer H, Sahin G (2009) N-acetylcysteine, a thiol antioxidant, decreases alveolar bone loss in experimental periodontitis in rats. J Periodontol 80:672–678

    CAS  PubMed  Google Scholar 

  134. Di Paola R, Mazzon E, Rotondo F, Dattola F, Britti D, De Majo M, Genovese T, Cuzzocrea S (2005) Reduced development of experimental periodontitis by treatment with M40403, a superoxide dismutase mimetic. Eur J Pharmacol 516:151–157

    PubMed  Google Scholar 

  135. Petelin M, Pavlica Z, Ivanusa T, Sentjurc M, Skaleric U (2000) Local delivery of liposome-encapsulated superoxide dismutase and catalase suppress periodontal inflammation in beagles. J Clin Periodontol 27:918–925

    CAS  PubMed  Google Scholar 

  136. Schenkein HA (2006) Host responses in maintaining periodontal health and determining periodontal disease. Periodontol 2000 40:77–93

    PubMed  Google Scholar 

  137. Graves DT, Fine D, Teng YT, Van Dyke TE, Hajishengallis G (2008) The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J Clin Periodontol 35:89–105

    PubMed Central  PubMed  Google Scholar 

  138. Oikawa D, Akai R, Tokuda M, Iwawaki T (2012) A transgenic mouse model for monitoring oxidative stress. Sci Rep 2:229

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (25293427) from the Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morita, M., Ekuni, D., Tomofuji, T. (2014). Association Between Oxidative Stress and Periodontal Diseases in Animal Model Studies. In: Ekuni, D., Battino, M., Tomofuji, T., Putnins, E. (eds) Studies on Periodontal Disease. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9557-4_3

Download citation

Publish with us

Policies and ethics