Skip to main content

Association of Sleep Apnea and Cancer: From Animal Studies to Human Epidemiologic Data

  • Chapter
  • First Online:
Impact of Sleep and Sleep Disturbances on Obesity and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 8))

Abstract

This chapter describes results from both animal experiments and human studies that support the hypothesis that sleep apnea might increase the risk of cancer mortality. Following laboratory experiments that demonstrated the pro-oncogenic properties of hypoxia, a melanoma mouse model of sleep apnea showed that tumor growth is greatly enhanced by intermittent hypoxia that mimics the periodicity and intensity of that occurring in sleep apnea patients. This effect appears to be mediated by increased production of vascular endothelial growth factor (VEGF) and tumor vascularization and was stronger in lean than in obese mice. This chapter also describes the results of a 22-year follow-up study among participants in the Wisconsin Sleep Cohort Study showing that presence and severity of sleep apnea (as indicated by the apnea-hypopnea index) is associated with increased risk of total cancer mortality in a dose-response fashion. The association was even stronger when the hypoxemia index (percent sleep time below 90 % O2 saturation) was used to characterize sleep apnea severity.

This chapter also reviews evidence from recent epidemiologic studies that explore whether or not sleep apnea is also associated with increased cancer incidence. Finally, the strength of the evidence in support of the hypothesis of a causal link between sleep apnea and mortality is discussed, and recommendations for future research in this area are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris AL. Hypoxia–a key regulatory factor in tumour growth. Nature reviews. Cancer. 2002;2(1):38–47.

    CAS  PubMed  Google Scholar 

  2. Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15(4):678–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med. 2011;365(6):537–47.

    Article  CAS  PubMed  Google Scholar 

  4. Toffoli S, Michiels C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J. 2008;275(12):2991–3002.

    Article  CAS  PubMed  Google Scholar 

  5. Rofstad EK, Gaustad JV, Egeland TA, Mathiesen B, Galappathi K. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer. 2010;127(7):1535–46.

    Google Scholar 

  6. Karoor V, Le M, Merrick D, Fagan KA, Dempsey EC, Miller YE. Alveolar hypoxia promotes murine lung tumor growth through a VEGFR-2/EGFR-dependent mechanism. Cancer Prev Res. 2012;5(8):1061–71.

    Article  CAS  Google Scholar 

  7. Eckert DJ, Malhotra A. Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):144–53.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI. Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep. 2009;32(4):447–70.

    PubMed Central  PubMed  Google Scholar 

  9. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31(8):1071–8.

    PubMed Central  PubMed  Google Scholar 

  10. Almendros I, Montserrat JM, Ramírez J, Torres M, Durán-Cantolla J, Navajas D, et al. Intermittent hypoxia enhances cancer progression in a mouse model of sleep apnoea. Eur Respir J (Official Journal of the European Society for Clinical Respiratory Physiology). 2012;39(1):215–7.

    Google Scholar 

  11. Almendros I, Montserrat JM, Torres M, Bonsignore MR, Chimenti L, Navajas D, et al. Obesity and intermittent hypoxia increase tumor growth in a mouse model of sleep apnea. Sleep Med. 2012;13(10):1254–60.

    Article  PubMed  Google Scholar 

  12. Lee EJ, Woodske ME, Zou B, O’Donnell CP. Dynamic arterial blood gas analysis in conscious, unrestrained C57BL/6J mice during exposure to intermittent hypoxia. J Appl Physiol. 2009;107(1):290–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 2013;1831(10):1533–41.

    Article  CAS  PubMed  Google Scholar 

  14. Almendros I, Montserrat JM, Torres M, Dalmases M, Cabanas ML, Campos-Rodríguez F, et al. Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea. Respir Physiol Neurobiol. 2013;186(3):303–7.

    Google Scholar 

  15. Geiger TR, Peeper DS. Metastasis mechanisms. Biochimica et Biophysica Acta. 2009;1796(2):293–308.

    CAS  PubMed  Google Scholar 

  16. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    Article  CAS  PubMed  Google Scholar 

  17. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230–5.

    Google Scholar 

  18. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–84.

    Article  CAS  PubMed  Google Scholar 

  19. Arzt M, Young T, Finn L, Skatrud JB, Bradley TD. Association of sleep-disordered breathing and the occurrence of stroke. Am J Respir Crit Care Med. 2005;172(11):1447–51.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Peppard PE, Szklo-Coxe M, Hla KM, Young T. Longitudinal association of sleep-related breathing disorder and depression. Arch Intern Med. 2006;166(16):1709–15.

    Article  PubMed  Google Scholar 

  21. Nieto FJ, Peppard PE, Young T, Finn L, Hla KM, Farré R. Sleep-disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med. 2012;186(2):190–4.

    Google Scholar 

  22. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep. 1999;22(5):667–89.

    Google Scholar 

  23. Campos-Rodríguez F, Martínez-Garcia MA, Martinez M, Durán-Cantolla J, Pena Mde L, Masdeu MJ, et al. Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am J Respir Crit Care Med. 2013;187(1):99–105.

    Google Scholar 

  24. Christensen AS, Clark A, Salo P, Nymann P, Lange P, Prescott E, et al. Symptoms of sleep-disordered breathing and risk of a cancer: a prospective cohort study. Sleep. 2013;36(10):1429–35.

    PubMed  Google Scholar 

  25. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer. 2007;121(11):2381–6.

    Google Scholar 

  26. Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci: CMLS. 2009;66(23):3663–73.

    Article  CAS  PubMed  Google Scholar 

  27. Yamauchi M, Nakano H, Maekawa J, Okamoto Y, Ohnishi Y, Suzuki T, et al. Oxidative stress in obstructive sleep apnea. Chest. 2005;127(5):1674–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kontogianni K, Messini-Nikolaki N, Christou K, Gourgoulianis K, Tsilimigaki S, Piperakis SM. DNA damage and repair capacity in lymphocytes from obstructive sleep apnea patients. Environ Mol Mutagen. 2007;48(9):722–7.

    Article  CAS  PubMed  Google Scholar 

  29. Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, Mantovani A, et al. Cellular and molecular pathways linking inflammation and cancer. Immunobiology. 2009;214(9–10):761–77.

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, Zhou BP. Inflammation: a driving force speeds cancer metastasis. Cell Cycle. 2009;8(20):3267–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Li S, Qian XH, Zhou W, Zhang Y, Feng J, Wan NS, et al. Time-dependent inflammatory factor production and NFkappaB activation in a rodent model of intermittent hypoxia. Swiss Med Wkly. 2011;141:w13309.

    PubMed  Google Scholar 

  32. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–5.

    CAS  PubMed  Google Scholar 

  33. Peppard PE, Nieto FJ. Here come the sleep apnea-cancer studies. Sleep. 2013;36(10): 1409–11.

    Google Scholar 

  34. Almendros I, Wang Y, Farré R, Gozal D. Intermittent hyoxia enhances melanoma cell proliferation only in co-culture with macrophages. Am J Respir Crit Care Med. 2013;187:A6061.

    Google Scholar 

  35. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nature reviews. Cancer. 2004;4(1):71–8.

    CAS  PubMed  Google Scholar 

  36. Hakim F, Wang Y, Zhang SXL, Yolcu ES, Carreras A, Shirwan H, et al. Chronic sleep disruption (SD) induces accelerated TC1 cell tumor growth and invasiveness via recruitment of tumor-associated macrophages (TAM) in mice. Am J Respir Crit Care Med. 2013;187:A2301.

    Google Scholar 

  37. Hakim F, Wang Y, Zhang SXL, Yolcu ES, Carreras A, Shirwan H, et al. Toll-like receptor (TLR4) signaling in TC1 cell tumor accelerated growth induced by chronic sleep disruption (SD) in mice. Am J Respir Crit Care Med. 2013;187:A2300.

    Google Scholar 

  38. Redline S, Quan SF. Sleep apnea: a common mechanism for the deadly triad–cardiovascular disease, diabetes, and cancer? Am J Respir Crit Care Med. 2012;186(2):123–4.

    Article  PubMed  Google Scholar 

  39. Martínez-Garcia MA, Campos-Rodríguez F, Farré R. Sleep apnoea and cancer: current insights and future perspectives. Eur Respir J. 2012;40(6):1315–7.

    Google Scholar 

  40. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Nieto M.D., M.P.H., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nieto, F.J., Farré, R. (2014). Association of Sleep Apnea and Cancer: From Animal Studies to Human Epidemiologic Data. In: Redline, S., Berger, N. (eds) Impact of Sleep and Sleep Disturbances on Obesity and Cancer. Energy Balance and Cancer, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9527-7_6

Download citation

Publish with us

Policies and ethics