Skip to main content

Reconstruction from Microscopic Projections with Defocus-Gradient and Attenuation Effects

  • Chapter
  • First Online:
Computational Methods for Three-Dimensional Microscopy Reconstruction

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We discuss and illustrate defocus-gradient and attenuation effects that are part of the image formation models of microscopy of biological specimens. We demonstrate how they affect the projection data and in turn the 3D reconstructions. Biologically meaningful results can be obtained ignoring both of these effects, but using image processing techniques to incorporate corrections for them into reconstruction methods provides more accurate reconstructions, with potential for creating higher-resolution models of the biological specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.helmholtz-berlin.de/.

  2. 2.

    http://www-als.lbl.gov/.

  3. 3.

    https://www.cells.es/Beamlines/XM/.

  4. 4.

    https://www.cells.es/Beamlines/XM/.

References

  1. Attwood D (2007) Soft X-Rays and extreme ultraviolet radiation: Principles and applications. Cambridge University Press, New York

    Google Scholar 

  2. Censor Y, Elfving T, Herman GT (1985) A method of iterative data refinement and its applications. Math Meth Appl Sci 7:108–123

    Article  MATH  MathSciNet  Google Scholar 

  3. Eibauer M, Hoffmann C, Plitzko JM, Baumeister W, Nickell S, Engelhardt H (2012) Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography. J Struct Biol 180:488–496

    Article  Google Scholar 

  4. Falcone R, Jacobsen C, Kirz J, Marchesini S, Shapiro D, Spence J (2011) New directions in X-ray microscopy. Contemp Phys 52:293–318

    Article  Google Scholar 

  5. Fernandez JJ, Li S, Crowther RA (2006a) CTF determination and correction in electron cryotomography. Ultramicroscopy 106:587–596

    Article  Google Scholar 

  6. Fernandez JJ, Sarzano COS, Marabini R, Carazo JM (2006b) Image processing and 3-D reconstruction in electron microscopy. IEEE Signal Process Mag 23(3):84–94

    Article  Google Scholar 

  7. Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies, 2nd edn. Oxford University Press

    Google Scholar 

  8. Herman GT (2009) Fundamentals of computerized tomography: Image reconstruction from projections, 2nd edn. Springer, New York

    Book  Google Scholar 

  9. Howells M, Jacobsen C, Warwick T, Bos A (2007) Principles and applications of zone plate X-ray microscopes. In: Hawkes P, Spence J (eds) Science of microscopy, Springer, New York pp 835–926

    Chapter  Google Scholar 

  10. Jensen GJ, Briegel A (2007) How electron cryotomography is opening a new window onto prokaryotic ultrastructure. Curr Opin Struc Biol 17:260–267

    Article  Google Scholar 

  11. Jensen GJ, Kornberg RD (2000) Defocus-gradient corrected back-projection. Ultramicroscopy 84:57–64

    Article  Google Scholar 

  12. Kazantsev IG, Klukowska J, Herman GT, Cernetic L (2010) Fully three-dimensional defocus-gradient corrected backprojection in cryoelectron microscopy. Ultramicroscopy 110:1128–42

    Article  Google Scholar 

  13. Klukowska J, Davidi R, Herman GT (2013) SNARK09 - a software package for reconstruction of 2D images from 1D projections. Comput Methods Programs Biomed 110:424–440

    Article  Google Scholar 

  14. Leis AP, Beck M, Gruska M, Best C, Hegerl R, Baumeister W, Leis JW (2006) Cryo-electron tomography of biological specimens. IEEE Signal Process Mag 23(3):95–103

    Article  Google Scholar 

  15. McDermott G, Le Gros M, Knoechel CG, Uchida M, Larabell CA (2009) Soft X-ray tomography and cryogenic light microscopy: The cool combination in cellular imaging. Trends Cell Biol 19:587–595

    Article  Google Scholar 

  16. Midgley PA, Ward EPW, Hungría AB, Thomas JM (2007) Nanotomography in the chemical, biological and materials sciences. Chem Soc Rev 36:1477–1494

    Article  Google Scholar 

  17. Müller WG, Heymann JB, Nagashima K, Guttmann P, Werner S, Rehbein S, Schneider G, McNally JG (2012) Towards an atlas of mammalian cell ultrastructure by cryo soft X-ray tomography. J Struct Biol 177:179–192

    Article  Google Scholar 

  18. Natterer F, WĂĽbbeling F (2001) Mathematical methods in image reconstruction. Society for Industrial and Applied Mathematics. Philadelphia

    Google Scholar 

  19. Oton J, Sorzano COS, Pereiro E, Cuenca-Alba J, Navarro R, Carazo JM, Marabini R (2012) Image formation in cellular X-ray microscopy. J Struct Biol 178:29–37

    Article  Google Scholar 

  20. Oton J, Sorzano COS, Chichon FJ, Carrascosa JL, Carazo JM, Marabini R (2013) Soft X-ray tomography imaging for biological samples. In: Herman GT, Frank J (eds) Computational Methods for Three-Dimensional Microscopy Reconstruction, Springer 187–220

    Google Scholar 

  21. Philippsen A, Engel HA, Engel A (2007) The contrast-imaging function for tilted specimens. Ultramicroscopy 107:202–212

    Article  Google Scholar 

  22. Reimer L, Kohl H (2008) Transmission electron microscopy: Physics of image formation. Springer, New York

    Google Scholar 

  23. Rosenfeld A, Kak AC (1982) Digital picture processing, vol 1, 2nd edn. Academic Press, New York

    Google Scholar 

  24. Rowland SW (1979) Computer implementation of image reconstruction formulas. In: Herman GT (ed) Image reconstruction from projections: Implementation and applications, Springer-Verlag Berlin Heildelberg, pp 9–79

    Google Scholar 

  25. Sorzano COS, Marabini R, Herman GT, Censor Y, Carazo JM (2004) Transfer function restoration in 3D electron microscopy via iterative data refinement. Phys Med Biol 49: 509–522

    Article  Google Scholar 

  26. Voortman LM, Stallinga S, Schoenmakers RHM, van Vliet L, Rieger B (2011) A fast algorithm for computing and correcting the CTF for tilted, thick specimens in TEM. Ultramicroscopy 111:1029–1036

    Article  Google Scholar 

  27. Voortman LM, Franken EM, van Vliet LJ, Rieger B (2012) Fast, spatially varying CTF correction in TEM. Ultramicroscopy 118:26–34

    Article  Google Scholar 

  28. Weiss D, Schneider G, Niemann B, Guttmann P, Rudolph D, Schmahl G (2000) Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy 84:185–197

    Article  Google Scholar 

  29. Winkler H, Taylor KA (2003) Focus gradient correction applied to tilt series image data used in electron tomography. J Struct Biol 143:24–32

    Article  Google Scholar 

  30. Zanetti G, Riches JD, Fuller SD, Briggs JAG (2009) Contrast transfer function correction applied to cryo-electron tomography and sub-tomogram averaging. J Struct Biol 168:305–312

    Article  Google Scholar 

  31. Zubelli JP, Marabini R, Sorzano COS, Herman GT (2003) Reconstruction by Chahine’s method from electron microscopic projections corrupted by instrumental aberrations. Inverse Probl 19:933–949

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work presented here is currently supported by the National Science Foundation award number DMS-1114901.

The authors would like to thank Joaquín Otón, José-María Carazo, Carlos Óscar Sánchez Sorzano, and Roberto Marabini for helpful discussions on microscopy and Roberto Marabini and Joachim Frank for comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Klukowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klukowska, J., Herman, G.T. (2014). Reconstruction from Microscopic Projections with Defocus-Gradient and Attenuation Effects. In: Herman, G., Frank, J. (eds) Computational Methods for Three-Dimensional Microscopy Reconstruction. Applied and Numerical Harmonic Analysis. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-9521-5_7

Download citation

Publish with us

Policies and ethics