Skip to main content

Fundamentals of Peptide-Materials Interfaces

  • Chapter
  • First Online:
Bio-Inspired Nanotechnology

Abstract

The investigation of the binding, dynamics and properties of peptides adsorbed on inorganic surfaces is an inherently multidisciplinary endeavor. This chapter is primarily aimed at new researchers in this field, to introduce the basic concepts that span physical chemistry, surface science, structural biology, computational techniques, and materials science; all of which are necessary for gaining a comprehensive overview of peptide-materials interfaces. What are the key insights that can be determined from these interfaces? Usually, this will comprise a blend of thermodynamics, kinetics and structural characterizations. Typically, we might wish to compare the binding strength of a peptide, and concomitantly, the structure(s) assumed by the peptide upon adsorption. We might also seek to characterize the surface diffusion, and/or aggregation (or assembly) of these surface-adsorbed biomolecules. These observations serve to facilitate connections between the composition and sequence of the peptide, and its behavior and properties at the interface. Such connections could be subsequently exploited in bioinformatics models to enable the prediction of new peptide sequences, with designed, predictable interfacial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkins PW, de Paula J (2010) Physical chemistry, 9th edn. OUP, Oxford

    Google Scholar 

  • Binnig G, Rohrer H, Gerber CH, Weibel E (1983) 7 × 7 Reconstruction on Si(111) resolved in real space. Phys Rev Lett 50:120–123

    Article  Google Scholar 

  • Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15:269–272

    Article  Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels pathways, and the energy landscape of protein-folding—a synthesis. Proteins 21:167–195

    Article  Google Scholar 

  • Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37:2403–2412

    Article  Google Scholar 

  • Chiu CY, Li Y, Huang Y (2010) Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide. Nanoscale 2:927–930

    Article  Google Scholar 

  • Collino S, Evans JS (2008) Molecular specifications of a mineral modulation sequence derived from the aragonite-promoting protein n16. Biomacromolecules 9:1909–1918

    Article  Google Scholar 

  • Cui Y, Kim SN, Jones SE, Wissler LL, Naik RR, McAlpine MC (2010) Chemical functionalization of graphene enabled by phage displayed peptides. Nano Lett 10:4559–4565

    Article  Google Scholar 

  • Delak K, Harcup C, Lakshminarayanan R, Sun Z, Fan YW, Moradian-Oldak J, Evans JS (2009) The tooth enamel protein, porcine amelogenin, is an intrinsically disordered protein with an extended molecular configuration in the monomeric form. Biochemistry 48:2272–2281

    Article  Google Scholar 

  • Dickerson MB, Sandhage KH, Naik RR (2008a) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108:4935–4978

    Article  Google Scholar 

  • Dickerson MB, Jones SJ, Cai Y, Ahmad G, Naik RR, Kroeger N, Sandhage KH (2008b) Identification and design of peptides for the rapid, high-yield formation of nanoparticulate TiO2 from aqueous solutions at room temperature. Chem Mater 20:1578–1584

    Google Scholar 

  • Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  Google Scholar 

  • Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

    Article  Google Scholar 

  • Estephan E, Saab MB, Martin M, Larroque C, Cuisinier FJG, Briot O, Ruffenach S, Moret M, Gergely C (2011) Phages recognizing the indium nitride semiconductor surface via their peptides. J Pept Sci 17:143–147

    Google Scholar 

  • Fang Y, Poulsen N, Dickerson MB, Cai Y, Jones SJ, Naik RR, Kroeger N, Sandhage KH (2008) Identification of peptides capable of inducing the formation of titania but not silica via a subtractive bacteriophage display approach. J Mater Chem 18:3871–3875

    Article  Google Scholar 

  • Fisher CK, Stultz CM (2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21:426–431

    Article  Google Scholar 

  • Flory PJ (1969) Statistical Mechanics of Chain Molecules. OUP, New York

    Google Scholar 

  • Forbes LM, Goodwin AP, Cha JN (2010) Tunable size and shape control of platinum nanocrystals from a single peptide sequence. Chem Mater 24:6524–6528

    Article  Google Scholar 

  • Goede K, Busch P, Grundmann M (2004) Binding specificity of a peptide on semiconductor surfaces. Nano Lett 4:2115–2120

    Article  Google Scholar 

  • Gungormus M, Fong H, Kim IW, Evans JS, Tamerler C, Sarikaya M (2008) Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides. Biomacromolecules 9:966–973

    Article  Google Scholar 

  • Guo J, Catchmark JM, Mohamed MNA, Benesi AJ, Tien M, Kao TH, Watts HD, Kubicki JD (2013) Identification and characterization of a cellulose binding heptapeptide revealed by phage display. Biomacromolecules 14:1795–1805

    Article  Google Scholar 

  • Hassenkam T, Mitchell AC, Pedersen CS, Skovbjerg LL, Bovet N, Stipp SLS (2012) The low salinity effect observed on sandstone model surfaces. Colloid Surf A 403:79–86

    Google Scholar 

  • Heinz H, Farmer BL, Pandey RB, Slocik JM, Patnaik SS, Pachter R, Naik RR (2009) Nature of molecular interactions of peptides with gold, palladium and pd-au bimetal surfaces in aqueous solution. J Am Chem Soc 131:9704–9714

    Article  Google Scholar 

  • Higo J, Nishimura Y, Nakamura H (2011) A free energy landscape for coupled folding and binding of an intrinsically disordered protein in explicit solvent from detailed all-atom simulations. J Am Chem Soc 133:10448–10458

    Article  Google Scholar 

  • Hnilova M, Oren EE, Seker UOS, Wilson BR, Collino S, Evans JS, Tamerler C, Sarikaya M (2008) Effect of molecular conformations on the adsorption behavior of gold-binding peptides. Langmuir 24:12440–12445

    Article  Google Scholar 

  • Jensen MR, Salmon L, Nodet G, Blackledge M (2010) Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts. J Am Chem Soc 132:1270–1272

    Article  Google Scholar 

  • Keene EC, Evans JS, Estroff LA (2010) Matrix interactions in biomineralization: aragonite nucleation by an intrinsically disordered nacre polypeptide, n16N, associated with a beta-chitin substrate. Cryst Growth Des 10:1383–1389

    Article  Google Scholar 

  • Knott M, Best RB (2012) A preformed binding interface in the unbound ensemble of an intrinsically disordered protein: evidence from molecular simulations. PLoS Comp Biol 8:e1002605-1-10

    Google Scholar 

  • Kulp JL, Shiba K, Evans JS (2005) Probing the conformational features of a phage display polypeptide sequence directed against single-walled carbon nanohorn surfaces. Langmuir 21:11907–11914

    Article  Google Scholar 

  • Lee SW, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895

    Article  Google Scholar 

  • Li CM, Botsaris GD, Kaplan DL (2002) Selective in vitro effect of peptides on calcium carbonate crystallization. Cryst Growth Des 2:387–393

    Article  Google Scholar 

  • Li YJ, Whyburn GB, Huang Y (2009) Specific peptide regulated synthesis of ultrasmall platinum nanocrystals. J Am Chem Soc 131:15998–15999

    Article  Google Scholar 

  • Lindorff-Larsen K, Trbovic N, Maragakis P, Piana S, Shaw DE (2012) Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J Am Chem Soc 134:3787–3791

    Article  Google Scholar 

  • Mao AH, Lyle N, Pappu RV (2013) Describing sequence-ensemble relationships for intrinsically disorderd proteins. Biochem J 449:307–318

    Article  Google Scholar 

  • Masica DL, Gray JJ (2009) Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system. Biophys J 96:3082–3091

    Article  Google Scholar 

  • Masica DL, Schrier SB, Specht EA, Gray JJ (2010) De novo design of peptide-calcite biomineralization systems. J Am Chem Soc 132:12252–12262

    Article  Google Scholar 

  • Mirau PA, Naik RR, Gehring P (2011) Structure of peptides on metal oxide surfaces probed by NMR. J Am Chem Soc 133:18243–18248

    Article  Google Scholar 

  • Mittal J, Yoo TH, Georgiou G, Truskett TM (2013) Structural ensemble of an intrinsically disordered peptide. J Phys Chem B 117:118–124

    Article  Google Scholar 

  • Moritsugu K, Terada T, Kidera A (2012) Disorder-to-order transition of an intrinsically disordered region of sortase revealed by multiscale enhanced sampling. J Am Chem Soc 134:7094–7101

    Article  Google Scholar 

  • Naik RR, Brott L, Carlson SJ, Stone MO (2002a) Silica precipitating peptides isolated from a combinatorial phage display library. J Nanosci Nanotechnol 2:95–100

    Article  Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002b) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Google Scholar 

  • Narayanan C, Weinstock DS, Wu KP, Baum J, Levy RM (2012) Investigation of the polymeric properties of α-synuclein and comparison with NMR experiments: a replica exchange molecular dynamics study. J Chem Theory Comput 8:3929–3942

    Article  Google Scholar 

  • Nergiz SZ, Slocik JM, Naik RR, Singamaneni S (2013) Phys Chem Chem Phys 15:11629–11633

    Article  Google Scholar 

  • Nygaard S, Wendelbo R, Brown S (2002) Surface-specific zeolite-binding proteins. Adv Mater 14:1853–1856

    Article  Google Scholar 

  • Oren EE, Tamerler C, Sahin D, Hnilova M, Seker UOS, Sarikaya M, Samudrala R (2007) A novel knowledge-based approach to design inorganic binding peptides. Bioinformatics 23:2816–2822

    Article  Google Scholar 

  • Oren EE, Notman R, Kim IW, Evans JS, Walsh TR, Samudrala R, Tamerler C, Sarikaya M (2010) Probing the molecular mechanisms of quartz-binding peptides. Langmuir 26:11003–11009

    Article  Google Scholar 

  • Ostermeir K, Zacharias M (2013) Advanced replica-exchange sampling to study the flexibility and plasticity of peptides and proteins. Biochim Biophys Acta 1834:847–853

    Article  Google Scholar 

  • Patwardhan SV, Emami FS, Berry RJ, Jones SE, Naik RR, Deschaume O, Heinz H, Perry CC (2012) Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J Am Chem Soc 134:6244–6246

    Article  Google Scholar 

  • Pender MJ, Sowards LA, Hartgerink JD, Stone MO, Naik RR (2006) Peptide-mediated formation of single-wall carbon nanotube composites. Nano Lett 6:40–44

    Article  Google Scholar 

  • Pilling MJ, Seakins PW (2001) Reaction kinetics. OUP, Oxford

    Google Scholar 

  • Puddu V, Perry CC (2012) Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions. ACS Nano 6:6356–6363

    Article  Google Scholar 

  • Rothenstein D, Claasen B, Omiecienski B, Lammel P, Bill J (2012) Isolation of ZnO-Binding 12-mer peptides and determination of their binding epitopes by NMR spectroscopy. J Am Chem Soc 134:12547–12556

    Google Scholar 

  • Roy MD, Stanley SK, Amis EJ, Becker ML (2008) Identification of a highly specific hydroxyapatite-binding peptide using phage display. Adv Mater 20:1830–1836

    Article  Google Scholar 

  • Ruan LY, Ramezani-Dakhel H, Chiu CY, Zhu E, Li YJ, Heinz H, Huang Y (2013) Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}. Nano Lett 13:840–846

    Article  Google Scholar 

  • Sano KI, Shiba K (2003) A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc 125:14234–14235

    Article  Google Scholar 

  • Sarikaya M, Tamerler C, Jen A-K, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585

    Article  Google Scholar 

  • Sarikaya M, Tamerler C, Schwartz DT, Baneyx F (2004) Materials assembly and formation using engineered polypeptides. Annu Rev Mater Res 34:373–408

    Article  Google Scholar 

  • Schneider J, Colombi Ciacchi L (2012) Specific material recognition by small peptides mediated by the interfacial solvent structure. J Am Chem Soc 134:2407–2413

    Google Scholar 

  • Serizawa T, Techawanitchai P, Matsuno H (2007) Isolation of peptides that can recognize syndiotactic polystyrene. ChemBioChem 8:989–993

    Article  Google Scholar 

  • Sethi A, Tian J, Vu DM, Gnanakaran S (2012) Identification of minimally interacting modules in an intrinsically disordered protein. Biophys J 103:748–757

    Article  Google Scholar 

  • Skelton AA, Liang TN, Walsh TR (2009) Interplay of sequence, conformation, and binding at the peptide-titania interface as mediated by water. ACS Appl Mater Interfaces 1:1482–1491

    Article  Google Scholar 

  • Slocik JM, Govorov AO, Naik RR (2011) Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett 11:701–705

    Article  Google Scholar 

  • So CR, Kulp JL, Oren EE, Zareie H, Tamerler C, Evans JS, Sarikaya M (2009) Molecular recognition and supramolecular self-assembly of a genetically engineered gold binding peptide on Au{111}. ACS Nano 3:1525–1531

    Article  Google Scholar 

  • Tamerler C, Duman M, Oren EE, Gungormus M, Xiong X, Kacar T, Parviz BA, Sarikaya M (2006) Materials specificity and directed assembly of a gold-binding peptide. Small 2:1372–1378

    Article  Google Scholar 

  • Terakawa T, Takada S (2011) Multiscale ensemble modelling of intrinsically disordered proteins: p53 N-terminal domain. Biophys J 101:1450–1458

    Article  Google Scholar 

  • Thai CK, Dai H, Sastry MSR, Sarikaya M, Schwartz DT, Baneyx F (2004) Identification and characterization of Cu2O- and ZnO-binding polypeptides by Escherichia coli cell surface display. J Biotech Bioeng 87:129–137

    Article  Google Scholar 

  • Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516

    Article  Google Scholar 

  • Vellore NA, Yancey JA, Collier G, Latour RA, Stuart SJ (2010) Assessment of the transferability of a protein force field for the simulation of peptide-surface interactions. Langmuir 26:7396–7404

    Article  Google Scholar 

  • Wales DJ (2003) Energy landscapes. CUP, Cambridge

    Google Scholar 

  • Wales DJ, Miller MA, Walsh TR (1998) Archetypal energy landscapes. Nature 394:758–760

    Article  Google Scholar 

  • Wang SQ, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2:196–200

    Article  Google Scholar 

  • Wang F, Stuart SJ, Latour RA (2008) Calculation of adsorption free energy for solute-surface interactions using biased replica-exchange molecular dynamics. Biointerphases 3:9–18

    Article  Google Scholar 

  • Wei Y, Latour RA (2008) Determination of the adsorption free energy for peptide-surface interactions by SPR spectroscopy. Langmuir 24:6721–6729

    Article  Google Scholar 

  • Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405:665–668

    Article  Google Scholar 

  • Whitford D (2005) Proteins: structure and function. Wiley, Chichester

    Google Scholar 

  • Wright LB, Walsh TR (2012) Facet selectivity of binding on quartz surfaces: free energy calculations of amino-acid analogue adsorption. J Phys Chem C 116:2933–2945

    Article  Google Scholar 

  • Wright LB, Walsh TR (2013) Efficient conformational sampling of peptides adsorbed onto inorganic surfaces: insights from a quartz binding peptide. Phys Chem Chem Phys 15:4715–4726

    Article  Google Scholar 

  • Xie HB, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6:1882–1898

    Article  Google Scholar 

Download references

Acknowledgments

TRW gratefully recognizes the enormously valuable contributions from members of her research group past and present, who have worked in this research field: Dr. Adam Skelton, Dr. Taining Liang, Dr. Rebecca Notman, Dr. Susana Tomasio, Simon Friling, Louise Wright, Aaron Brown, Jasmine Desmond, Dr J. Pablo Palafox-Hernandez, Dr Zak Hughes, Kurt Drew, Anas Sultan and Andrew Church. TRW also acknowledges helpful discussions with colleagues and collaborators, from both experiment and theory, in the field of peptide-surface interactions: M. R. Knecht, R. R. Naik, R. A. Latour, J. S. Evans, S. Corni, L. Colombi-Ciacchi, S. Monti, M. Sarikaya, C. Tamerler, E. E. Oren, C. C. Perry, C. L. Freeman, P. M. Rodger, M. P. Allen, J. D. Gale, S. L. S. Stipp, J. H. Harding, M. T. Swihart and P. N. Prasad. Funding from the EPSRC, AFOSR, Deakin University and the AOARD is gratefully acknowledged. TRW thanks veski for an Innovation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany R. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walsh, T.R. (2014). Fundamentals of Peptide-Materials Interfaces. In: Knecht, M., Walsh, T. (eds) Bio-Inspired Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9446-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9446-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9445-4

  • Online ISBN: 978-1-4614-9446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics