Skip to main content

Nanooncology

  • Chapter
  • First Online:
Applications of Biotechnology in Oncology

Abstract

Nanotechnology (Greek word nano means dwarf) is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, i.e., at the level of atoms, molecules, and supramolecular structures. Nanotechnology, as defined by the National Nanotechnology Initiative (http://www.nano.gov/), is the understanding and control of matter at dimensions of roughly 1–100 nm, where unique phenomena enable novel applications. Encompassing nanoscale science, engineering, and technology, nanotechnology involves imaging, measuring, modeling, and manipulating matter at this length scale. It is the popular term for the construction and utilization of functional structures with at least one characteristic dimension measured in nanometers—a nanometer is one billionth of a meter (10−9 m).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Jamal KT, Al-Jamal WT, Akerman S, et al. Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth. Proc Natl Acad Sci U S A 2010;107:3966-71.

    Google Scholar 

  • Anderson SA, Glod J, Arbab AS, et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005;105:420-5.

    CAS  Google Scholar 

  • Andreev OA, Dupuy AD, Segala M, et al. Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proc Natl Acad Sci U S A 2007;104:7893-8.

    CAS  Google Scholar 

  • Arias JL, Reddy LH, Othman M, et al. Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano 2011;5:1513-21.

    CAS  Google Scholar 

  • Arora HC, Jensen MP, Yuan Y, et al. Nanocarriers Enhance Doxorubicin Uptake in Drug-Resistant Ovarian Cancer Cells. Cancer Res 2012;72:769-78.

    CAS  Google Scholar 

  • Arvizo RR, Rana S, Miranda OR, et al. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine 2011;7:580-7.

    CAS  Google Scholar 

  • Arvizo RR, Saha S, Wang E, et al. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proc Natl Acad Sci U S A 2013;110:6700-5.

    CAS  Google Scholar 

  • Ashcroft JM, Tsyboulski DA, Hartman KB, et al. Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun 2006;28:3004-6.

    Google Scholar 

  • Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett 2007;7:3065-70.

    CAS  Google Scholar 

  • Bailey VJ, Easwaran H, Zhang Y, et al. MS-qFRET: A quantum dot-based method for analysis of DNA methylation. Genome Res 2009;19: 1455-61.

    CAS  Google Scholar 

  • Bajaj A, Miranda OR, Kim IB, et al. Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proc Natl Acad Sci U S A 2009;106:10912-6.

    CAS  Google Scholar 

  • Ballou B, Ernst LA, Andreko S et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 2007;18:389-96.

    CAS  Google Scholar 

  • Bardhan R, Chen W, Perez-Torres C, et al. Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Advanced Functional Materials 2009;19:3901-9.

    CAS  Google Scholar 

  • Bartlett DW, Su H, Hildebrandt IJ, et al. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 2007;104:15549-54.

    CAS  Google Scholar 

  • Basu S, Harfouche R, Soni S, et al. Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci U S A 2009;106:7957-61.

    CAS  Google Scholar 

  • Battah S, Balaratnam S, Casas A, et al. Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Mol Cancer Ther 2007;6:876-85.

    CAS  Google Scholar 

  • Benezra M, Penate-Medina O, Zanzonico PB, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 2011;121:2768-80.

    CAS  Google Scholar 

  • Bertin PA, Gibbs JM, Shen CK, et al. Multifunctional polymeric nanoparticles from diverse bioactive agents. J Am Chem Soc 2006;128:4168-9.

    CAS  Google Scholar 

  • Bisht S, Feldmann G, Soni S, et al. Polymeric nanoparticle-encapsulated curcumin (nanocurcumin): a novel strategy for human cancer therapy. J Nanobiotechnol 2007;5:3.

    Google Scholar 

  • Cao Z, Ma Y, Yue X, et al. Stabilized liposomal nanohybrid cerasomes for drug delivery applications. Chem Commun (Camb) 2010;46:5265-7.

    CAS  Google Scholar 

  • Chakravarty P, Marches R, Zimmerman NS, et al. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci U S A 2008;105:8697-702.

    CAS  Google Scholar 

  • Chanda N, Kattumuri V, Shukla R, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci U S A 2010;107:8760-5.

    CAS  Google Scholar 

  • Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 2011;40:2673-703.

    CAS  Google Scholar 

  • Choi J, Jun Y, Yeon S, et al. Biocompatible Heterostructured Nanoparticles for Multimodal Biological Detection. JACS 2006;128:15982-3.

    CAS  Google Scholar 

  • Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A 2010a;107:1235-40.

    CAS  Google Scholar 

  • Choi KY, Chung H, Min KH, et al. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010b;31:106-14.

    CAS  Google Scholar 

  • Chouhan R, Bajpai AK. Real time in vitro studies of doxorubicin release from PHEMA nanoparticles. Journal of Nanobiotechnology 2009;7:5.

    Google Scholar 

  • Cinteza LO, Ohulchanskyy TY, Sahoo Y, et al. Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy. Mol Pharm 2006;3:415-23.

    CAS  Google Scholar 

  • Cohen SM, Mukerji R, Cai S, et al. Subcutaneous delivery of nanoconjugated doxorubicin and cisplatin for locally advanced breast cancer demonstrates improved efficacy and decreased toxicity at lower doses than standard systemic combination therapy in vivo. Am J Surg 2011;202:646-53.

    CAS  Google Scholar 

  • Cortez-Retamozo V, Backmann N, Senter PD, et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 2004;64:2853-7.

    CAS  Google Scholar 

  • Cotí KK, Belowich ME, Liong M, et al. Mechanised nanoparticles for drug delivery. Nanoscale 2009;1:16-39.

    Google Scholar 

  • Denardo SJ, Denardo GL, Natarajan A, et al. Thermal Dosimetry Predictive of Efficacy of 111In-ChL6 Nanoparticle AMF-Induced Thermoablative Therapy for Human Breast Cancer in Mice. J Nucl Med 2007;48:437-44.

    CAS  Google Scholar 

  • Derfus AM, von Maltzahn G, Harris TJ, et al. Remotely Triggered Release from Magnetic Nanoparticles. Advanced Materials 2007;9:3932-36.

    Google Scholar 

  • Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012;335:831-4.

    CAS  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett 2005;5:829-34.

    CAS  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed M. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters 2006;239:129-35.

    CAS  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, et al. Nanoparticle-Aptamer Bioconjugates: A New Approach for Targeting Prostate Cancer Cells. Cancer Research 2004;64:7668-7672.

    CAS  Google Scholar 

  • Fortina P, Kricka LJ, Graves DJ, et al. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 2007;25:145-52.

    CAS  Google Scholar 

  • Franzen S. A comparison of peptide and folate receptor targeting of cancer cells: from single agent to nanoparticle. Expert Opin Drug Deliv 2011;8:281-98.

    CAS  Google Scholar 

  • Galanzha EI, Shashkov EV, Kelly T, et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 2009;4:855-60.

    CAS  Google Scholar 

  • Gao D, Xu H, Philbert MA, et al. Ultrafine Hydrogel Nanoparticles: Synthetic Approach and Therapeutic Application in Living Cells. Angew Chem Int Ed Engl 2007;46:2224-7.

    CAS  Google Scholar 

  • Gibson JD, Khanal B, Zubarev E. Paclitaxel-Functionalized Gold Nanoparticles. J Am Chem Soc 2007;129:11653-61.

    CAS  Google Scholar 

  • Gordon EM, Levy JP, Reed RA, et al. Targeting metastatic cancer from the inside: A new generation of targeted gene delivery vectors enables personalized cancer vaccination in situ. Int J Oncol 2008;33:665-75.

    CAS  Google Scholar 

  • Gradishar WJ, Tjulandin S, Davidson N, et al. Superior Efficacy of Albumin-Bound Paclitaxel, ABI-007, Compared With Polyethylated Castor Oil-Based Paclitaxel in Women With Metastatic Breast Cancer: Results of a Phase III Trial. J Clin Oncol 2005;23:7794-803.

    CAS  Google Scholar 

  • Guarneri V, Dieci MV, Conte PF. Enhancing intracellular taxane delivery: current role and perspectives of nanoparticle albumin-bound paclitaxel in the treatment of advanced breast cancer. Expert Opin Pharmacother 2012;13:395-406.

    CAS  Google Scholar 

  • Hou S, Zhao H, Zhao L, et al. Capture and stimulated release of circulating tumor cells on polymer grafted silicon nanostructures. Advanced Materials 2013;25:1547-51.

    CAS  Google Scholar 

  • Huang X, Ren J. Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker. Anal Chim Acta 2011;686:115-20.

    CAS  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128:2115-20.

    CAS  Google Scholar 

  • Huff TB, Tong L, Zhao Y, et al. Hyperthermic effects of gold nanorods on tumor cells. Nanomed 2007;2:125-32.

    CAS  Google Scholar 

  • Huschka R, Neumann O, Barhoumi A, Halas NJ: Visualizing light-triggered release of molecules inside living cells. Photodynamic therapy of cancer using nanoparticles Nano Lett 2010;10:4117-22.

    CAS  Google Scholar 

  • Injac R, Perse M, Boskovic M, et al. Cardioprotective Effects of Fullerenol C60(Oh)24 on a Single Dose Doxorubicin-induced Cardiotoxicity in Rats With Malignant Neoplasm. Technol Cancer Res Treat 2008;7:15-26.

    CAS  Google Scholar 

  • Jain KK. Recent advances in nanooncology. TCRT 2008;7:1-13.

    CAS  Google Scholar 

  • Jain KK. Handbook of Nanomedicine, 2nd ed, Springer, New York, 2012.

    Google Scholar 

  • Jain TK, Morales MA, Sahoo SK, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2005;2:194-205.

    CAS  Google Scholar 

  • Jia N, Lian Q, Shen H, et al. Intracellular Delivery of Quantum Dots Tagged Antisense Oligodeoxynucleotides by Functionalized Multiwalled Carbon Nanotubes. Nano Lett 2007;7:2976-80.

    CAS  Google Scholar 

  • Jose GP, Santra S, Mandal SK, Sengupta TK. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnol 2011;9:9.

    CAS  Google Scholar 

  • Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 2010;132:1517-9.

    CAS  Google Scholar 

  • Kano MR, Bae Y, Iwata C, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-{beta} signaling. Proc Natl Acad Sci U S A 2007;104:3460-5.

    CAS  Google Scholar 

  • Kennedy LC, Bear AS, Young JK, et al. T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Research Letters 2011;6:283.

    Google Scholar 

  • Koo OM, Rubinstein I, Onyuksel H. Camptothecin in sterically stabilized phospholipid nano-micelles: a novel solvent pH change solubilization method. J Nanosci Nanotechnol 2006;6:2996-3000.

    CAS  Google Scholar 

  • Lam R, Ho D. Nanodiamonds as vehicles for systemic and localized drug delivery. Expert Opin Drug Deliv 2009;6:883-95.

    CAS  Google Scholar 

  • Larina IV, Evers BM, Ashitkov TV, et al. Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation. Technol Cancer Res Treat 2005;4:217-26.

    Google Scholar 

  • Lee Y, Park SY, Kim C, Park TG. Thermally triggered intracellular explosion of volume transition nanogels for necrotic cell death. J Control Release 2009;135:89-95.

    CAS  Google Scholar 

  • Li YJ, Perkin AL, Su Y, et al. Gold nanoparticles as a platform for creating a multivalent poly-SUMO chain inhibitor that also augments ionizing radiation. Proc Natl Acad Sci U S A 2012;109:4092-7.

    CAS  Google Scholar 

  • Liu Z, Chen K, Davis C, et al. Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment. Cancer Res 2008;68:6652-60.

    CAS  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs. Small 2007;3:1341-6.

    CAS  Google Scholar 

  • Ma Y, Manolache S, Denes FS, et al. Plasma synthesis of carbon magnetic nanoparticles and immobilization of doxorubicin for targeted drug delivery. J Biomater Sci Polym Ed 2004;15:1033-49.

    CAS  Google Scholar 

  • MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, et al. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol 2009;27:643-51.

    CAS  Google Scholar 

  • MacDiarmid JA, Mugridge NB, Weiss JC, et al. Bacterially Derived 400 nm Particles for Encapsulation and Cancer Cell Targeting of Chemotherapeutics. Cancer Cell 2007;11:431-45.

    CAS  Google Scholar 

  • MacKay JA, Chen M, McDaniel JR, et al. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mat 2009;8:993-9.

    Google Scholar 

  • Martel S, Mohammadi M, Felfoul O, et al. Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature. Int’l J Robotics Res 2009;28:571-82.

    Google Scholar 

  • McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007;48:1180-9.

    CAS  Google Scholar 

  • Mi Y, Guo Y, Feng SS. Nanomedicine for multimodality treatment of cancer. Nanomedicine 2012;7:1791-4.

    CAS  Google Scholar 

  • Murakami T, Sawada H, Tamura G, et al. Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomedicine 2008;3:453-63.

    CAS  Google Scholar 

  • Myc A, Majoros IJ, Thomas TP, Baker JR Jr. Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules 2007;8:13-8.

    CAS  Google Scholar 

  • Nair BG, Nagaoka Y, Morimoto H, et al. Aptamer conjugated magnetic nanoparticles as nanosurgeons. Nanotechnology 2010;21:455102.

    Google Scholar 

  • Noble CO, Krauze MT, Drummond DC, et al. Novel Nanoliposomal CPT-11 Infused by Convection-Enhanced Delivery in Intracranial Tumors: Pharmacology and Efficacy. Cancer Res 2006;66:2801-6.

    CAS  Google Scholar 

  • Ohulchanskyy TY, Roy I, Goswami LN, Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett 2007;7:2835-42.

    CAS  Google Scholar 

  • Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin Drug Deliv 2010;7:681-703.

    CAS  Google Scholar 

  • Palakurthi S, Yellepeddi VK, Vangara KK. Recent trends in cancer drug resistance reversal strategies using nanoparticles. Expert Opin Drug Deliv 2012;9:287-301.

    CAS  Google Scholar 

  • Pan D, Caruthers SD, Hu G, et al. Ligand-directed nanobialys as theranostic agent for drug delivery and manganese-based magnetic resonance imaging of vascular targets. J Am Chem Soc 2008;130:9186-7.

    CAS  Google Scholar 

  • Paraskar AS, Soni S, Chin KT, et al. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc Natl Acad Sci U S A 2010;107:12435-40.

    CAS  Google Scholar 

  • Peng W, Anderson DG, Bao Y, et al. Nanoparticulate delivery of suicide DNA to murine prostate and prostate tumors. Prostate 2007;67:855-62.

    CAS  Google Scholar 

  • Pirollo KF, Rait A, Zhou Q, et al. Materializing the Potential of Small Interfering RNA via a Tumor-Targeting Nanodelivery System. Cancer Res 2007;67:2938-43.

    CAS  Google Scholar 

  • Puri A, Kramer-Marek G, et al. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res 2008;18:293-307.

    CAS  Google Scholar 

  • Qian X, Peng XH, Ansari DO, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotech 2008;26:83-90.

    CAS  Google Scholar 

  • Rabin O, Manuel Perez J, Grimm J, et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 2006; 5:118-22.

    CAS  Google Scholar 

  • Rapoport N, Gao Z, Kennedy A. Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy. JNCI 2007;99:1095-106.

    CAS  Google Scholar 

  • Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 2010;7:1063-77.

    Google Scholar 

  • Rivkin I, Cohen K, Koffler J, et al. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials 2010;31:7106-14.

    CAS  Google Scholar 

  • Rosenholm JM, Mamaeva V, Sahlgren C, Lindén M. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine (Lond) 2012;7:111-20.

    CAS  Google Scholar 

  • Scarberry KE, Dickerson EB, McDonald JF, et al. Magnetic Nanoparticle−Peptide Conjugates for in Vitro and in Vivo Targeting and Extraction of Cancer Cells. J Am Chem Soc 2008;130:10258-62.

    CAS  Google Scholar 

  • Schluep T, Hwang J, Hildebrandt IJ, et al. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc Natl Acad Sci U S A 2009;106:11394-9.

    CAS  Google Scholar 

  • Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2012;12:39-50.

    CAS  Google Scholar 

  • Shukla R, Chanda N, Zambre A, et al. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci U S A 2012;109:12426-31.

    CAS  Google Scholar 

  • Simberg D, Duza T, Park JH, et al. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci U S A 2007;104:932-6.

    Google Scholar 

  • Singh P, Destito G, Schneemann A, Manchester M. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnology 2006;4:2.

    Google Scholar 

  • Soman NR, Baldwin SL, Hu G, et al. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 2009; 119:2830-42.

    CAS  Google Scholar 

  • Stover TC, Sharma A, Robertson GP, Kester M. Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res 2005;11:3465-74.

    CAS  Google Scholar 

  • Straub JA, Chickering DE, Lovely JC, et al. Intravenous hydrophobic drug delivery: a porous particle formulation of paclitaxel (AI-850). Pharm Res 2005;22:347-55.

    CAS  Google Scholar 

  • Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized Micellar Systems for Cancer Targeted Drug Delivery. Pharmaceutical Research 2007;24:1029-46.

    CAS  Google Scholar 

  • Tada H, Higuchi H, Wanatabe TM, Ohuchi N: In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007;67:1138-44.

    CAS  Google Scholar 

  • Tagaram HR, Divittore NA, Barth BM, et al. Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma. Gut 2011;60:695-701.

    CAS  Google Scholar 

  • Talelli M, Rijcken CJ, Oliveira S, et al. Nanobody-shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. J Control Release 2011;151:183-92.

    CAS  Google Scholar 

  • Tan A, De La Peña H, Seifalian AM. The application of exosomes as a nanoscale cancer vaccine. Int J Nanomedicine 2010;5:889-900.

    CAS  Google Scholar 

  • Thakor AS, Luong R, Paulmurugan R, et al. The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci Transl Med 2011;3:79ra33.

    Google Scholar 

  • Thaxton CS, Elghanian R, Thomas AD, et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci USA 2009;106:18437-42.

    CAS  Google Scholar 

  • Thomas CR, Ferris DP, Lee JH, et al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 2010;132:10623-5.

    CAS  Google Scholar 

  • Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007;35(Pt 1):61-7.

    CAS  Google Scholar 

  • van Vlerken LE, Duan Z, Seiden MV, Amiji MM. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 2007;67:4843-50.

    Google Scholar 

  • Wagner E. Programmed drug delivery: nanosystems for tumor targeting. Expert Opinion on Biological Therapy 2007;7:587-593.

    CAS  Google Scholar 

  • Wang P, Jia L, Sanders BG, Kline K. Liposomal or nanoparticle alpha-TEA reduced 66cl-4 murine mammary cancer burden and metastasis. Drug Deliv 2007;14:497-505.

    CAS  Google Scholar 

  • Wang S, Wang H, Jiao J, et al. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew Chem Int Ed Engl 2009;48:8970-3.

    CAS  Google Scholar 

  • Wang AZ, Yuet K, Zhang L, et al. ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine (Lond) 2010;5:361-8.

    CAS  Google Scholar 

  • Wang J, Gao Y, Wientjes MG. Improving delivery and efficacy of nanomedicines in solid tumors: role of tumor priming. Nanomedicine 2011a;6:1605-20.

    CAS  Google Scholar 

  • Wang S, Liu K, Liu J, et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed Engl 2011b;50:3084-8.

    CAS  Google Scholar 

  • Weigum SE, Floriano PN, Redding SW, et al. Nano-Bio-Chip Sensor Platform for Examination of Oral Exfoliative Cytology. Cancer Prev Res 2010;3;518-28.

    CAS  Google Scholar 

  • Wu Y, Sefah K, Liu H, et al. DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci U S A 2009;107:5-10.

    Google Scholar 

  • Xiao Y, Lubin AA, Baker BR, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proc Natl Acad Sci U S A 2006;103: 16677-80.

    CAS  Google Scholar 

  • Xie H, Li YF, Kagawa HK, et al. An intrinsically fluorescent recognition ligand scaffold based on chaperonin protein and semiconductor quantum-dot conjugates. Small 2009;5:1036-42.

    CAS  Google Scholar 

  • Yao L, Danniels J, Moshnikova A, et al. pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci U S A 2013;110:465-70.

    CAS  Google Scholar 

  • Yeh TK, Lu Z, Wientjes MG, Au JL. Formulating paclitaxel in nanoparticles alters its disposition. Pharm Res 2005;22:867-74.

    CAS  Google Scholar 

  • Yen Y, Synold T, Schluep T, et al. First-in-human phase I trial of a cyclodextrin-containing polymer-camptothecin nanoparticle in patients with solid tumors. Journal of Clinical Oncology 2007 June 20 ASCO Annual Meeting Proceedings Part I;25(18S):14078.

    Google Scholar 

  • Yu KN, Lee SM, Han JY, Park H, et al. Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced Raman spectroscopic dots. Bioconjug Chem 2007;18:1155-62.

    CAS  Google Scholar 

  • Zhang C, Newsome JT, Mewani R, et al. Systemic delivery and pre-clinical evaluation of nanoparticles containing antisense oligonucleotides and siRNAs. Methods Mol Biol 2009;480:65-83.

    CAS  Google Scholar 

  • Zhang E, Zhang C, Su Y, et al. Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 2011;16:140-6.

    CAS  Google Scholar 

  • Zharov VP, Galitovskaya EN, Johnson C, Kelly T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 2005;37:219-26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, K.K. (2014). Nanooncology. In: Applications of Biotechnology in Oncology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9245-0_9

Download citation

Publish with us

Policies and ethics