Skip to main content

Oncoproteomics

  • Chapter
  • First Online:
Applications of Biotechnology in Oncology

Abstract

The term “proteomics” indicates PROTEins expressed by a genOME and is the systematic analysis of protein profiles of tissues. The term “proteome” refers to all proteins produced by a species, much as the genome is the entire set of genes. Unlike the genome, the proteome varies with time and is defined as “the proteins present in one sample (tissue, organism, cell culture) at a certain point in time.” Proteomics parallels the related field of genomics. Now that the human genome has been sequenced, we face the greater challenge of making use of this information for improving healthcare and discovering new drugs. There is an increasing interest in proteomic technologies now because deoxyribonucleic acid (DNA) sequence information provides only a static snapshot of the various ways in which the cell might use its proteins, whereas the life of the cell is a dynamic process. With this background, DNA/RNA (ribonucleic acid) sequences, per se, are not enough for the clear identification of a therapeutic target because proteins and not DNA/RNA are the basis of mode of action of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carney WP, Leitzel K, Ali S, et al. HER-2/neu diagnostics in breast cancer. Breast Cancer Res 2007;9:207.

    Article  Google Scholar 

  • Cheng L, Zhang S, MacLennan GT, et al. Laser-assisted microdissection in translational research: theory, technical considerations, and future applications. Appl Immunohistochem Mol Morphol 2013;21:31-47.

    Google Scholar 

  • Cohen AA, Geva-Zatorsky N, Eden E, et al. Dynamic Proteomics of Individual Cancer Cells in Response to a Drug. Science 2008;322:1511-16.

    Article  CAS  Google Scholar 

  • Conrad DH, Goyette J, Thomas PS. Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Intern Med 2008;23 Suppl 1:78-84.

    Article  Google Scholar 

  • Czibere A, Grall F, Aivado M. Perspectives of proteomics in acute myeloid leukemia. Expert Rev Anticancer Ther 2006;6:1663-75.

    Article  CAS  Google Scholar 

  • D’Amico TA. Molecular biologic staging of lung cancer. Ann Thorac Surg 2008;85:S737-42.

    Article  Google Scholar 

  • Eberlin LS, Norton I, Orringer D, et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. PNAS 2013;110:1611-6.

    Article  Google Scholar 

  • Elenitoba-Johnson KS, Crockett DK, Schumacher JA, et al. Proteomic identification of oncogenic chromosomal translocation partners encoding chimeric anaplastic lymphoma kinase fusion proteins. Proc Natl Acad Sci USA 2006;103:7402-7.

    Google Scholar 

  • Engwegen JY, Helgason HH, Cats A, et al. Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation-time of flight mass spectrometry. World J Gastroenterol 2006;12:1536-44.

    Google Scholar 

  • Fitzpatrick E, McBride S, Yavelow J, et al. Microfluidic techniques for single-cell protein expression analysis. Clin Chem 2006;52:1080-8.

    Article  CAS  Google Scholar 

  • Gjertsen BT, Sjoholt G. Proteomic strategies of therapeutic individualization and target discovery in acute leukemia. In, Daoud SS (ed) Cancer Proteomics, Humana Press, Totowa, NJ, 2008:161-187.

    Chapter  Google Scholar 

  • Guo A, Villén J, Kornhauser J, et al. Signaling networks assembled by oncogenic EGFR and c-Met. PNAS 2008;105:692-7.

    Article  CAS  Google Scholar 

  • Habermann JK, Bader FG, Franke C, et al. From the genome to the proteome-biomarkers in colorectal cancer. Langenbecks Arch Surg 2008;393:93-104.

    Article  Google Scholar 

  • Hellstrom M, Lexander H, Franzen B, Egevad L. Proteomics in prostate cancer research. Anal Quant Cytol Histol 2007;29:32-40.

    Google Scholar 

  • Holt GE, Schwartz HS, Caldwell RL. Proteomic profiling in musculoskeletal oncology by MALDI mass spectrometry. Clin Orthop Relat Res 2006;450:105-10.

    Article  Google Scholar 

  • Honda K, Hayashida Y, Umaki T, et al. Possible Detection of Pancreatic Cancer by Plasma Protein Profiling. Cancer Research 2005;65:10613-22.

    Article  CAS  Google Scholar 

  • Jain KK. Application of Laser Capture Microdissection to Proteomics. Methods in Enzymology 2002a;356:157-67.

    Article  CAS  Google Scholar 

  • Jain KK. Innovations, Challenges and Future prospects of Oncoproteomics. Molecular Oncology 2008;2:153-60.

    Article  Google Scholar 

  • Jain KK. Proteomics: technologies, markets and companies. Jain PharmaBiotech Publications, Basel, 2013.

    Google Scholar 

  • Jain KK. Recent advances in oncoproteomics. Curr Opin Mol Ther 2002b;4: 203-09.

    CAS  Google Scholar 

  • Jain A, Tindell CA, Laux I, et al. Epithelial membrane protein-1 is a biomarker of gefitinib resistance. Proc Natl Acad Sci USA 2005;102:11858-63.

    Google Scholar 

  • Koboldt DC, Fulton RS, McLellan MD, et al. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61-70.

    Article  CAS  Google Scholar 

  • Kranenburg O, Emmink BL, Knol J, et al. Proteomics in studying cancer stem cell biology. Expert Rev Proteomics 2012;9:325-36.

    Article  CAS  Google Scholar 

  • Krieg RC, Knuechel R, Schiffmann E, et al. Mitochondrial proteome: cancer-altered metabolism associated with cytochrome c oxidase subunit level variation. Proteomics 2004;4:2789-95.

    Article  CAS  Google Scholar 

  • Li C, Ruan HQ, Liu YS, et al. Quantitative proteomics reveal up-regulated protein expression of the SET complex associated with hepatocellular carcinoma. J Proteome Res 2012;11:871-85.

    Article  CAS  Google Scholar 

  • Lin JF, Xu J, Tian HY, et al. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer 2007;121:2596-605.

    Article  CAS  Google Scholar 

  • Liu J, Zheng S, Yu JK, et al. Serum protein fingerprinting coupled with artificial neural network distinguishes glioma from healthy population or brain benign tumor. J Zhejiang Univ Sci B 2005;6:4-10.

    Article  CAS  Google Scholar 

  • Lopez-Pedrera C, Villalba JM, Siendones E, et al. Proteomic analysis of acute myeloid leukemia: Identification of potential early biomarkers and therapeutic targets. Proteomics 2006;6 Suppl 1:S293-9.

    Article  Google Scholar 

  • Odreman F, Vindigni M, Gonzales ML, et al. Proteomic studies on low- and high-grade human brain astrocytomas. J Proteome Res 2005;4:698-708.

    Article  CAS  Google Scholar 

  • Okamoto H, Li J, Vortmeyer AO, et al. Comparative Proteomic Profiles of Meningioma Subtypes. Cancer Res 2006;66:10199-204.

    Article  CAS  Google Scholar 

  • Patz EF Jr, Campa MJ, Gottlin EB, et al. Panel of serum biomarkers for the diagnosis of lung cancer. J Clin Oncol 2007;25:5578-83.

    Article  Google Scholar 

  • Pritchard KI, Shepherd LE, O’Malley FP, et al. HER2 and Responsiveness of Breast Cancer to Adjuvant Chemotherapy. NEJM 2006;354:2103-11.

    Article  CAS  Google Scholar 

  • Qi YJ, He QY, Ma YF, et al. Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. J Cell Biochem 2008;104:1625-35.

    Article  CAS  Google Scholar 

  • Rahman-Roblick R, Roblick UJ, Hellman U, et al. p53 targets identified by protein expression profiling. PNAS 2007;104:5401-6.

    Article  CAS  Google Scholar 

  • Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131:1190-203.

    Article  CAS  Google Scholar 

  • Savblom C, Malm J, Giwercman A, et al. Blood levels of free-PSA but not complex-PSA significantly correlates to prostate release of PSA in semen in young men, while blood levels of complex-PSA, but not free-PSA increase with age. Prostate 2005;65:66-72.

    Article  Google Scholar 

  • Schumacher JA, Crockett DK, Elenitoba-Johnson KS, Lim MS. Evaluation of enrichment techniques for mass spectrometry: identification of tyrosine phosphoproteins in cancer cells. J Mol Diagn 2007;9:169-77.

    Article  CAS  Google Scholar 

  • Suber RL, Flanders VL, Campa MJ, Patz EF Jr. Accentuation of differentially expressed proteins using phage technology. Anal Biochem 2004;333:351-7.

    Article  CAS  Google Scholar 

  • Tian S, Meng FY, Tang JM. Proteomics analysis of bone marrow cells of acute myeloid leukemia M2a and prognostic significance thereof. Zhonghua Yi Xue Za Zhi 2007;87:538-41.

    CAS  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, et al. Epigenetic stem cell signature in cancer. Nat Genetics 2007;39:157-8.

    Article  CAS  Google Scholar 

  • Yuen HF, Chua CW, Chan YP, et al. Id proteins expression in prostate cancer: high-level expression of Id-4 in primary prostate cancer is associated with development of metastases. Mod Pathol 2006;19:931-41.

    Article  CAS  Google Scholar 

  • Zhang JT, Liu Y. Use of comparative proteomics to identify potential resistance mechanisms in cancer treatment. Cancer Treat Rev 2007;33:741-56.

    Article  Google Scholar 

  • Zhao L, Liu L, Wang S, et al. Differential proteomic analysis of human colorectal carcinoma cell lines metastasis-associated proteins. J Cancer Res Clin Oncol 2007;133:771-82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, K.K. (2014). Oncoproteomics. In: Applications of Biotechnology in Oncology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9245-0_4

Download citation

Publish with us

Policies and ethics