Skip to main content

Stellar Remnants

  • Chapter
  • First Online:
Principles of Astrophysics

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

  • 120k Accesses

Abstract

White dwarfs and neutron stars are dense objects left behind when low- and high-mass stars die (respectively). These objects have no ongoing fusion to generate the heat and pressure that normally counteract gravity, so the gas gets crushed to incredibly dense states that are quite unfamiliar to us on Earth. Essentially, gravity squeezes the gas until quantum mechanics pushes back. In this chapter we study white dwarfs in some detail and discuss neutron stars briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This presentation follows part of the book Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects by Shapiro and Teukolsky [1], which gives considerably more detail.

  2. 2.

    The brightest stars in our sky have individual names, but most stars are labeled by the name of the constellation in which they appear on the sky, and a letter or number that indicates how they rank among stars in that constellation.

  3. 3.

    A whole star spinning in a few milliseconds—wow!

References

  1. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1986)

    Google Scholar 

  2. W. Herschel, R. Soc. Lond. Philos. Trans. Ser. I 75, 40 (1785)

    Google Scholar 

  3. F.W. Bessel, Mon. Not. R. Astron. Soc. 6, 136 (1844)

    ADS  Google Scholar 

  4. C. Flammarion, Astron. Regist. 15, 186 (1877)

    ADS  Google Scholar 

  5. J. Liebert, P.A. Young, D. Arnett, J.B. Holberg, K.A. Williams, Astrophys. J. Lett. 630, L69 (2005)

    Article  ADS  Google Scholar 

  6. E.L. Schatzman, White Dwarfs. Series in Astrophysics (North-Holland, Amsterdam, 1958)

    Google Scholar 

  7. W.S. Adams, Publ. Astron. Soc. Pac. 26, 198 (1914)

    Article  ADS  Google Scholar 

  8. W.S. Adams, Publ. Astron. Soc. Pac. 27, 236 (1915)

    Article  ADS  Google Scholar 

  9. J.L. Provencal, H.L. Shipman, E. Høg, P. Thejll, Astrophys. J. Lett. 494, 759 (1998)

    Article  ADS  Google Scholar 

  10. M. Kramer et al., Science 314, 97 (2006)

    Article  ADS  Google Scholar 

  11. J.M. Weisberg, D.J. Nice, J.H. Taylor, Astrophys. J. 722, 1030 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keeton, C. (2014). Stellar Remnants. In: Principles of Astrophysics. Undergraduate Lecture Notes in Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9236-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9236-8_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9235-1

  • Online ISBN: 978-1-4614-9236-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics