Skip to main content

Mycobacterium tuberculosis: Evolution, Host–Pathogen Interactions, and Implications for Tuberculosis Control

  • Chapter
  • First Online:
Dynamic Models of Infectious Diseases
  • 1176 Accesses

Abstract

Mycobacterium tuberculosis continues to be a major cause of morbidity and mortality in the world. One-third of the world population is estimated to be infected with tuberculosis resulting in 8.8 million new cases and 1.4 million deaths associated to tuberculosis in 2011 (WHO-fact sheet-2011). The emergence of multidrug-resistant (MDR) and other forms of extensive-drug-resistant (XDR) tuberculosis in many parts of the world is threatening to send us back to an era when tuberculosis was an untreatable disease. Despite the fast pace of progress in the field of tuberculosis research in the last decade, the implementation of promising discoveries continues to be a challenge. In most countries, National Tuberculosis Programs are still using smear microscopy, a 120-year-old technology, to diagnose tuberculosis and treatment regimens that have not changed in the past 40 years. Furthermore, we still have important gaps in our knowledge of the basic biology of M. tuberculosis, as it pertains to pathogen and human interactions. We still do not know the extent of genetic diversity in tuberculosis bacteria, nor do we understand the implications of this diversity in terms of virulence, vaccine, and drug development. Nevertheless, there is fascinating new research into the global diversity of tuberculosis strains and its association to ancient human migrations out of Africa, as well as to more recent migration patterns of humans in the last 500 years. These most recent insights into the diversity of tuberculosis and human coevolution are promising a more far-reaching understanding of the biology of tuberculosis with potential payoffs for the eventual elimination of tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell DG (2011) Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev 240(1):252–268

    PubMed  CAS  Google Scholar 

  2. Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV (2009) Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7(7):537–544

    PubMed  CAS  Google Scholar 

  3. Iseman MD (2000) A clinician’s guide to tuberculosis, 1st edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  4. Blaser MJ, Kirschner D (2007) The equilibria that allow bacterial persistence in human hosts. Nature 449(7164):843–849

    PubMed  CAS  Google Scholar 

  5. Small PM, Fujiwara PI (2001) Management of tuberculosis in the United States. N Engl J Med 345(3):189–200

    PubMed  CAS  Google Scholar 

  6. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K et al (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42(6):498–503

    PubMed  CAS  Google Scholar 

  7. Burgos M, DeRiemer K, Small PM, Hopewell PC, Daley CL (2003) Effect of drug resistance on the generation of secondary cases of tuberculosis. J Infect Dis 188(12):1878–1884

    PubMed  Google Scholar 

  8. Flores L, Kato-Maeda M, Metcalfe JZ (2011) Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies. Future Microbiol 6(2):203–216

    PubMed  Google Scholar 

  9. Hanekom M, Gey van Pittius NC, McEvoy C, Victor TC, Van Helden PD, Warren RM (2011) Mycobacterium tuberculosis Beijing genotype: a template for success. Tuberculosis 91(6):510–523

    PubMed  CAS  Google Scholar 

  10. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN et al (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431(7004):84–87

    PubMed  CAS  Google Scholar 

  11. Hanekom M, Van der Spuy GD, Streicher E, Ndabambi SL, McEvoy CRE, Kidd M et al (2007) A recently evolved sublineage of the Mycobacterium tuberculosis Beijing strain family is associated with an increased ability to spread and cause disease. J Clin Microbiol 45(5):1483–1490

    PubMed  CAS  Google Scholar 

  12. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544

    PubMed  CAS  Google Scholar 

  13. Smith NH, Kremer K, Inwald J, Dale J, Driscoll JR, Gordon SV et al (2006) Ecotypes of the Mycobacterium tuberculosis complex. J Theor Biol 239(2):220–225

    PubMed  Google Scholar 

  14. Comas I, Homolka S, Niemann S, Gagneux S (2009) Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS ONE 4(11):e7815

    PubMed  Google Scholar 

  15. Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathog 5(10):e1000600

    PubMed  Google Scholar 

  16. Van Belkum A (2003) High-throughput epidemiologic typing in clinical microbiology. Clin Microbiol Infect 9(2):86–100

    PubMed  Google Scholar 

  17. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E et al (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44(12):4498–4510

    PubMed  CAS  Google Scholar 

  18. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K et al (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99(6):3684–3689

    PubMed  CAS  Google Scholar 

  19. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS et al (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94(18):9869–9874

    PubMed  CAS  Google Scholar 

  20. Gagneux S (2012) Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci 367(1590):850–859

    PubMed  CAS  Google Scholar 

  21. Fabre M, Hauck Y, Soler C, Koeck J-L, Van Ingen J, Van Soolingen D et al (2010) Molecular characteristics of “Mycobacterium canettii” the smooth Mycobacterium tuberculosis bacilli. Infect Genet Evol 10(8):1165–1173

    PubMed  CAS  Google Scholar 

  22. Huard RC, Fabre M, De Haas P, Claudio Oliveira Lazzarini L, Van Soolingen D, Cousins D et al (2006) Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex. J Bacteriol 188(12):4271–4287

    PubMed  CAS  Google Scholar 

  23. Alexander KA, Laver PN, Michel AL, Williams M, Van Helden PD, Warren RM et al (2010) Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg Infect Dis 16(8):1296–1299

    PubMed  Google Scholar 

  24. Bentley SD, Comas I, Bryant JM, Walker D, Smith NH, Harris SR et al (2012) The genome of Mycobacterium africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS Negl Trop Dis 6(2):e1552

    PubMed  CAS  Google Scholar 

  25. Achtman M (2008) Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 62:53–70

    PubMed  CAS  Google Scholar 

  26. Weniger T, Krawczyk J, Supply P, Harmsen D, Niemann S (2012) Online tools for polyphasic analysis of Mycobacterium tuberculosis complex genotyping data: now and next. Infect Genet Evol 12(4):748–754

    PubMed  Google Scholar 

  27. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S et al (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311

    PubMed  Google Scholar 

  28. Kato-Maeda M, Metcalfe JZ, Flores L (2011) Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies. Future Microbiol 6(2):203–216

    PubMed  CAS  Google Scholar 

  29. Van Soolingen D, Kremer K (2009) [Findings and ongoing research in the molecular epidemiology of tuberculosis]. Kekkaku 84(2):83–89

    PubMed  Google Scholar 

  30. Schürch AC, Van Soolingen D (2011) DNA fingerprinting of Mycobacterium tuberculosis: from phage typing to whole-genome sequencing. Infect Genet Evol. http://www.ncbi.nlm.nih.gov/pubmed/22067515. Accessed 20 Feb 2012

  31. Burgos MV, Pym AS (2002) Molecular epidemiology of tuberculosis. Eur Respir J 20(36 suppl):54s–65s

    Google Scholar 

  32. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN (2006) Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 19(4):658–685

    PubMed  CAS  Google Scholar 

  33. Fok A, Numata Y, Schulzer M, FitzGerald MJ (2008) Risk factors for clustering of tuberculosis cases: a systematic review of population-based molecular epidemiology studies. Int J Tuberc Lung Dis 12(5):480–492

    PubMed  CAS  Google Scholar 

  34. van Soolingen D, Borgdorff MW, de Haas PEW, Sebek MMGG, Veen J, Dessens M et al (1999) Molecular epidemiology of tuberculosis in the Netherlands: A nationwide study from 1993 through 1997. J Infect Dis 180(3):726–736

    PubMed  Google Scholar 

  35. Bifani PJ (1996) Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275(6):452–457

    PubMed  CAS  Google Scholar 

  36. Glynn JR, Whiteley J, Bifani PJ, Kremer K, Van Soolingen D (2002) Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8(8):843

    PubMed  Google Scholar 

  37. Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbón MH, Bobadilla del Valle M et al (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188(2):759

    PubMed  CAS  Google Scholar 

  38. Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. PNAS 101(14):4871–4876

    PubMed  CAS  Google Scholar 

  39. Van Soolingen D, De Haas PE, Hermans PW, Groenen PM, Van Embden JD (1993) Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 31(8):1987–1995

    PubMed  Google Scholar 

  40. Van Embden JD, Van Soolingen D, Small PM, Hermans PW (1992) Genetic markers for the epidemiology of tuberculosis. Res Microbiol 143(4):385–391

    PubMed  Google Scholar 

  41. Kremer K, Van Soolingen D, Frothingham R, Haas WH, Hermans PW, Martín C et al (1999) Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol 37(8):2607–2618

    PubMed  CAS  Google Scholar 

  42. Small PM, Hopewell PC, Singh SP, Paz A, Parsonnet J, Ruston DC et al (1994) The epidemiology of tuberculosis in San Francisco–a population-based study using conventional and molecular methods. N Engl J Med 330(24):1703–1709

    PubMed  CAS  Google Scholar 

  43. Caminero JA, Pena MJ, Campos-Herrero MI, Rodríguez JC, García I, Cabrera P et al (2001) Epidemiological evidence of the spread of a Mycobacterium tuberculosis strain of the Beijing genotype on Gran Canaria Island. Am J Respir Crit Care Med 164(7):1165–1170

    PubMed  CAS  Google Scholar 

  44. de Beer JL, Kremer K, Ködmön C, Supply P, van Soolingen D (2012) First worldwide proficiency study on variable-number tandem-repeat typing of Mycobacterium tuberculosis complex strains. J Clin Microbiol 50(3):662–669

    PubMed  Google Scholar 

  45. Van Soolingen D (2001) Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med 249(1):1–26

    PubMed  Google Scholar 

  46. Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35(4):907–914

    PubMed  CAS  Google Scholar 

  47. Goguet de la Salmonière YO, Li HM, Torrea G, Bunschoten A, Van Embden J, Gicquel B (1997) Evaluation of spoligotyping in a study of the transmission of Mycobacterium tuberculosis. J Clin Microbiol 35(9):2210–2214

    PubMed  Google Scholar 

  48. Molhuizen HO, Bunschoten AE, Schouls LM, Van Embden JD (1998) Rapid detection and simultaneous strain differentiation of Mycobacterium tuberculosis complex bacteria by spoligotyping. Methods Mol Biol 101:381–394

    PubMed  CAS  Google Scholar 

  49. Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA et al (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6:23

    PubMed  Google Scholar 

  50. Tsolaki AG, Gagneux S, Pym AS, Goguet de la Salmoniere Y-OL, Kreiswirth BN, Van Soolingen D et al (2005) Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J Clin Microbiol 43(7):3185–3191

    PubMed  CAS  Google Scholar 

  51. Skuce RA, McCorry TP, McCarroll JF, Roring SMM, Scott AN, Brittain D et al (2002) Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology 148(Pt 2):519–528

    PubMed  CAS  Google Scholar 

  52. Allix-Béguec C, Harmsen D, Weniger T, Supply P, Niemann S (2008) Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 46(8):2692–2699

    PubMed  Google Scholar 

  53. Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, Gicquel B et al (2001) High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci 98(4):1901

    PubMed  CAS  Google Scholar 

  54. Supply P, Lesjean S, Savine E, Kremer K, Van Soolingen D, Locht C (2001) Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39(10):3563–3571

    PubMed  CAS  Google Scholar 

  55. Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, Hannan M et al (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. PNAS 101(14):4865–4870

    PubMed  CAS  Google Scholar 

  56. Gutacker MM, Smoot JC, Migliaccio CAL, Ricklefs SM, Hua S, Cousins DV et al (2002) Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial STRAINS. Genetics 162(4):1533–1543

    PubMed  CAS  Google Scholar 

  57. Supply P, Warren RM, Bañuls A-L, Lesjean S, Van Der Spuy GD, Lewis L-A et al (2003) Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol 47(2):529–538

    PubMed  CAS  Google Scholar 

  58. Schürch AC, Van Soolingen D (2012) DNA fingerprinting of Mycobacterium tuberculosis: from phage typing to whole-genome sequencing. Infect Genet Evol 12(4):602–609

    PubMed  Google Scholar 

  59. Alland D, Whittam TS, Murray MB, Cave MD, Hazbon MH, Dix K et al (2003) Modeling bacterial evolution with comparative-genome-based marker systems: application to Mycobacterium tuberculosis evolution and pathogenesis. J Bacteriol 185(11):3392

    PubMed  CAS  Google Scholar 

  60. Ford C, Yusim K, Ioerger T, Feng S, Chase M, Greene M et al (2012) Mycobacterium tuberculosis–heterogeneity revealed through whole genome sequencing. Tuberculosis (Edinb) 92(3):194–201

    CAS  Google Scholar 

  61. Niemann S, Köser CU, Gagneux S, Plinke C, Homolka S, Bignell H et al (2009) Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS ONE 4(10):e7407

    PubMed  Google Scholar 

  62. Saunders NJ, Trivedi UH, Thomson ML, Doig C, Laurenson IF, Blaxter ML (2011) Deep resequencing of serial sputum isolates of Mycobacterium tuberculosis during therapeutic failure due to poor compliance reveals stepwise mutation of key resistance genes on an otherwise stable genetic background. J Infect 62(3):212–217

    PubMed  Google Scholar 

  63. Boshoff HIM, Reed MB, Barry CE III, Mizrahi V (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113(2):183–193

    PubMed  CAS  Google Scholar 

  64. Dos Vultos T, Mestre O, Tonjum T, Gicquel B (2009) DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol Rev 33(3):471–487

    PubMed  Google Scholar 

  65. Gardy JL, Johnston JC, Sui SJH, Cook VJ, Shah L, Brodkin E et al (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364(8):730–739

    PubMed  CAS  Google Scholar 

  66. Chen Y-Y, Chang J-R, Huang W-F, Kuo S-C, Su I-J, Sun J-R et al (2012) Genetic diversity of the Mycobacterium tuberculosis Beijing family based on SNP and VNTR typing profiles in Asian countries. PLoS ONE 7(7):e39792

    PubMed  CAS  Google Scholar 

  67. van Deutekom H, Gerritsen JJJ, van Soolingen D, van Ameijden EJC, van Embden JDA, Coutinho RA (1997) A molecular epidemiological approach to studying the transmission of tuberculosis in Amsterdam. Clin Infect Dis 25(5):1071–1077

    PubMed  Google Scholar 

  68. Daley CL, Small PM, Schecter GF, Schoolnik GK, McAdam RA, Jacobs WR Jr et al (1992) An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus. An analysis using restriction-fragment-length polymorphisms. N Engl J Med 326(4):231–235

    PubMed  CAS  Google Scholar 

  69. Jasmer RM, Hahn JA, Small PM, Daley CL, Behr MA, Moss AR et al (1999) A molecular epidemiologic analysis of tuberculosis trends in San Francisco, 1991–1997. Ann Intern Med 130(12):971–978

    PubMed  CAS  Google Scholar 

  70. Goebel T (2007) The missing years for modern humans. Science 315(5809):194–196

    PubMed  CAS  Google Scholar 

  71. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M et al. (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1238740/. Accessed 24 Sep 2012

    Google Scholar 

  72. Kappelman J, Alçiçek MC, Kazanci N, Schultz M, Ozkul M, Sen S (2008) First Homo erectus from Turkey and implications for migrations into temperate Eurasia. Am J Phys Anthropol 135(1):110–116

    PubMed  Google Scholar 

  73. Barnes E (2007) Diseases and human evolution. UNM Press, New Mexico

    Google Scholar 

  74. Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P et al (2007) An African origin for the intimate association between humans and Helicobacter pylori. Nature 445(7130):915–918

    PubMed  Google Scholar 

  75. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S et al (2006) Variable host–pathogen compatibility in Mycobacterium tuberculosis. PNAS 103(8):2869–2873

    PubMed  CAS  Google Scholar 

  76. Hewinson RG, Vordermeier HM, Smith NH, Gordon SV (2006) Recent advances in our knowledge of Mycobacterium bovis: a feeling for the organism. Vet Microbiol 112(2–4):127–139

    PubMed  Google Scholar 

  77. Mostowy S, Inwald J, Gordon S, Martin C, Warren R, Kremer K et al (2005) Revisiting the evolution of Mycobacterium bovis. J Bacteriol 187(18):6386–6395

    PubMed  CAS  Google Scholar 

  78. Garnier T, Eiglmeier K, Camus J-C, Medina N, Mansoor H, Pryor M et al (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 100(13):7877–7882

    PubMed  CAS  Google Scholar 

  79. Brosch R, Pym AS, Gordon SV, Cole ST (2001) The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol 9(9):452–458

    PubMed  CAS  Google Scholar 

  80. Djelouadji Z, Raoult D, Drancourt M (2011) Palaeogenomics of Mycobacterium tuberculosis: epidemic bursts with a degrading genome. Lancet Infect Dis 11(8):641–650

    PubMed  Google Scholar 

  81. Smith NH (2012) The global distribution and phylogeography of Mycobacterium bovis clonal complexes. Infect Genet Evol 12(4):857–865

    PubMed  Google Scholar 

  82. Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7(5):328–337

    PubMed  Google Scholar 

  83. Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA et al (2006) Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis 193(1):121–128

    PubMed  CAS  Google Scholar 

  84. Wirth T, Hildebrand F, Allix-Béguec C, Wölbeling F, Kubica T, Kremer K et al (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4(9):e1000160

    PubMed  Google Scholar 

  85. Coscolla M, Gagneux S (2010) Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov Today Dis Mech 7(1):e43–e59

    PubMed  CAS  Google Scholar 

  86. Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE (2007) The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol 189(7):2583–2589

    PubMed  CAS  Google Scholar 

  87. Comas I, Gagneux S (2011) A role for systems epidemiology in tuberculosis research. Trends Microbiol 19(10):492–500

    PubMed  CAS  Google Scholar 

  88. Portevin D, Gagneux S, Comas I, Young D (2011) Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 7(3):e1001307

    PubMed  CAS  Google Scholar 

  89. De Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM et al (2008) Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis 198(7):1037–1043

    PubMed  Google Scholar 

  90. Van Soolingen D, Qian L, De Haas PE, Douglas JT, Traore H, Portaels F et al (1995) Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol 33(12):3234–3238

    PubMed  Google Scholar 

  91. Anh DD, Borgdorff MW, Van LN, Lan NT, Van Gorkom T, Kremer K et al (2000) Mycobacterium tuberculosis Beijing genotype emerging in Vietnam. Emerg Infect Dis 6(3):302–305

    PubMed  CAS  Google Scholar 

  92. Chan MY, Borgdorff M, Yip CW, De Haas PEW, Wong WS, Kam KM et al. (2001) Seventy percent of the Mycobacterium tuberculosis isolates in Hong Kong represent the Beijing genotype. Epidemiol Infect 127(01). http://www.journals.cambridge.org/abstract_S0950268801005659. Accessed 30 Oct 2012

  93. Mokrousov I (2008) Genetic geography of Mycobacterium tuberculosis Beijing genotype: a multifacet mirror of human history? Infect Genet Evol 8(6):777–785

    PubMed  CAS  Google Scholar 

  94. Cowley D, Govender D, February B, Wolfe M, Steyn L, Evans J et al (2008) Recent and rapid emergence of W-Beijing strains of Mycobacterium tuberculosis in Cape Town, South Africa. Clin Infect Dis 47(10):1252–1259

    PubMed  Google Scholar 

  95. Parwati I, Van Crevel R, Van Soolingen D (2010) Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis 10(2):103–111

    PubMed  Google Scholar 

  96. Schürch AC, Kremer K, Hendriks ACA, Freyee B, McEvoy CRE, Van Crevel R et al (2011) SNP/RD typing of Mycobacterium tuberculosis Beijing strains reveals local and worldwide disseminated clonal complexes. PLoS ONE 6(12):e28365

    PubMed  Google Scholar 

  97. Röltgen K, Qi W, Ruf M-T, Mensah-Quainoo E, Pidot SJ, Seemann T et al (2010) Single nucleotide polymorphism typing of Mycobacterium ulcerans reveals focal transmission of buruli ulcer in a highly endemic region of Ghana. PLoS Negl Trop Dis 4(7):e751

    PubMed  Google Scholar 

  98. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM et al (2010) Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 42(12):1140–1143

    PubMed  CAS  Google Scholar 

  99. Monot M, Honoré N, Garnier T, Zidane N, Sherafi D, Paniz-Mondolfi A et al (2009) Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41(12):1282–1289

    PubMed  CAS  Google Scholar 

  100. De Jong BC, Antonio M, Gagneux S (2010) Mycobacterium africanum–review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis 4(9):e744

    PubMed  Google Scholar 

  101. Mostowy S, Cousins D, Brinkman J, Aranaz A, Behr MA (2002) Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis 186(1):74–80

    PubMed  CAS  Google Scholar 

  102. Intemann CD, Thye T, Niemann S, Browne ENL, Amanua Chinbuah M, Enimil A et al. (2009) Autophagy gene variant IRGM − 261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog 5(9). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735778/. Accessed 17 Oct 2012

    Google Scholar 

  103. Jamison DTDT, Breman JGJG, Measham ARAR, Alleyne GG, Claeson MM, Evans DBDB et al (eds) (2006) Disease control priorities in developing countries, 2nd edn. World Bank, Washington (DC)

    Google Scholar 

  104. Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, ZiaZarifi AH et al (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136(2):420–425

    PubMed  Google Scholar 

  105. Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C (2012) Totally drug-resistant tuberculosis in India. Clin Infect Dis 54(4):579–581

    PubMed  Google Scholar 

  106. Burgos M, Gonzalez LC, Paz EA, Gournis E, Kawamura LM, Schecter G et al (2005) Treatment of multidrug-resistant tuberculosis in San Francisco: an outpatient-based approach. Clin Infect Dis 40(7):968–975

    PubMed  Google Scholar 

  107. Zignol M, van Gemert W, Falzon D, Sismanidis C, Glaziou P, Floyd K, Raviglione M (2012) Surveillance of anti-tuberculosis drug resistance in the world: an updated analysis, 2007–2010. Bull WHO 90:111

    PubMed  Google Scholar 

  108. Pablos-Méndez A, Raviglione MC, Laszlo A, Binkin N, Rieder HL, Bustreo F et al (1998) Global surveillance for antituberculosis-drug resistance, 1994–1997. N Engl J Med 338(23):1641–1649

    PubMed  Google Scholar 

  109. Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U et al (2006) Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368(9547):1575–1580

    PubMed  Google Scholar 

  110. Dalton T, Cegielski P, Akksilp S, Asencios L, Caoili JC, Cho S-N et al (2012) Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet;380(9851):1406–17

    Google Scholar 

  111. Shah NPR (2008) Extensively drug-resistant tuberculosis in the united states, 1993–2007. JAMA 300(18):2153–2160

    PubMed  CAS  Google Scholar 

  112. McIlleron H, Rustomjee R, Vahedi M, Mthiyane T, Denti P, Connolly C et al (2012) Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother 56(6):3232–3238

    PubMed  CAS  Google Scholar 

  113. Mukinda FK, Theron D, Van der Spuy GD, Jacobson KR, Roscher M, Streicher EM et al (2012) Rise in rifampicin-monoresistant tuberculosis in Western Cape, South Africa. Int J Tuberc Lung Dis 16(2):196–202

    PubMed  CAS  Google Scholar 

  114. WHO (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB). World Health Organization, Geneva

    Google Scholar 

  115. WHO (2012) Surveillance of drug resistance in tuberculosis. WHO. http://www.who.int/tb/publications/mdr_surveillance/en/index.html. Accessed 21 Dec 2012

  116. Gandhi NR, Weissman D, Moodley P, Ramathal M, Elson I, Kreiswirth BN et al (2013) Nosocomial transmission of extensively drug-resistant tuberculosis in a rural hospital in South Africa. J Infect Dis 207(1):9–17

    PubMed  Google Scholar 

  117. Ioerger TR, Koo S, No E-G, Chen X, Larsen MH, Jacobs WR et al (2009) Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE 4(11):e7778

    PubMed  Google Scholar 

  118. McElroy PD, Sterling TR, Driver CR, Kreiswirth B, Woodley CL, Cronin WA et al (2002) Use of DNA fingerprinting to investigate a multiyear, multistate tuberculosis outbreak. Emerg Infect Dis 8(11):1252–1256

    PubMed  Google Scholar 

  119. Moss AR, Alland D, Telzak E, Hewlett D Jr, Sharp V, Chiliade P et al (1997) A city-wide outbreak of a multiple-drug-resistant strain of Mycobacterium tuberculosis in New York. Int J Tuberc Lung Dis 1(2):115–121

    PubMed  CAS  Google Scholar 

  120. Frieden TR, Sherman LF, Maw KL, Fujiwara PI, Crawford JT, Nivin B et al (1996) A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA 276(15):1229–1235

    PubMed  CAS  Google Scholar 

  121. Frieden TR, Fujiwara PI, Washko RM, Hamburg MA (1995) Tuberculosis in New York City–turning the tide. N Engl J Med 333(4):229–233

    PubMed  CAS  Google Scholar 

  122. Stroud LA, Tokars JI, Grieco MH, Crawford JT, Culver DH, Edlin BR et al (1995) Evaluation of infection control measures in preventing the nosocomial transmission of multidrug-resistant Mycobacterium tuberculosis in a New York City hospital. Infect Control Hosp Epidemiol 16(3):141–147

    PubMed  CAS  Google Scholar 

  123. Lawn SD, Wood R, De Cock KM, Kranzer K, Lewis JJ, Churchyard GJ (2010) Antiretrovirals and isoniazid preventive therapy in the prevention of HIV-associated tuberculosis in settings with limited health-care resources. Lancet Infect Dis 10(7):489–498

    PubMed  Google Scholar 

  124. Akolo C, Adetifa I, Shepperd S, Volmink J (2010) Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev (1):CD000171

    Google Scholar 

  125. Borrell S, Gagneux S (2009) Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13(12):1456–1466

    PubMed  CAS  Google Scholar 

  126. Dye C, Watt CJ, Bleed DM, Hosseini SM, Raviglione MC (2005) Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. JAMA 293(22):2767

    PubMed  CAS  Google Scholar 

  127. Dye C, Williams BG (2010) The population dynamics and control of tuberculosis. Science 328(5980):856–861

    PubMed  CAS  Google Scholar 

  128. Dye C, Williams BG, Espinal MA, Raviglione MC (2002) Erasing the world’s slow stain: strategies to beat multidrug-resistant tuberculosis. Science 295(5562):2042–2046

    PubMed  CAS  Google Scholar 

  129. Cohen T, Murray M (2004) Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 10(10):1117–1121

    PubMed  CAS  Google Scholar 

  130. Borrell S, Gagneux S (2011) Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis. Clin Microbiol Infect 17(6):815–820

    PubMed  CAS  Google Scholar 

  131. Gagneux S, Burgos MV, DeRiemer K, Encisco A, Muñoz S, Hopewell PC et al (2006) Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog 2(6):e61

    PubMed  Google Scholar 

  132. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M et al (2011) Whole-genome sequencing of rifampicin-resistant M. tuberculosis strains identifies compensatory mutations in RNA polymerase. Nat Genet 44(1):106–110

    PubMed  Google Scholar 

  133. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358(6387):591–593

    PubMed  CAS  Google Scholar 

  134. Timmins GS, Deretic V (2006) Mechanisms of action of isoniazid. Mol Microbiol 62(5):1220–1227

    PubMed  CAS  Google Scholar 

  135. Maisnier-Patin S, Andersson DI (2004) Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol 155(5):360–369

    PubMed  CAS  Google Scholar 

  136. Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE III et al (1996) Compensatory ahpC Gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272(5268):1641–1643

    PubMed  CAS  Google Scholar 

  137. Rouse DA, DeVito JA, Li Z, Byer H, Morris SL (1996) Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis-, effects on catalase- peroxidase activities and isoniazid resistance. Mol Microbiol 22(3):583–592

    PubMed  CAS  Google Scholar 

  138. Pym AS, Domenech P, Honoré N, Song J, Deretic V, Cole ST (2001) Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol Microbiol 40(4):879–889

    PubMed  CAS  Google Scholar 

  139. Wilson T, de Lisle GW, Marcinkeviciene JA, Blanchardand JS, Collins DM (1998) Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144(10):2687–2695

    PubMed  CAS  Google Scholar 

  140. Heym B, Stavropoulos E, Honoré N, Domenech P, Saint-Joanis B, Wilson TM et al (1997) Effects of over expression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect Immun 65(4):1395–1401

    PubMed  CAS  Google Scholar 

  141. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJM (2006) The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312(5782):1944–1946

    PubMed  CAS  Google Scholar 

  142. Brandis G, Wrande M, Liljas L, Hughes D (2012) Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 85(1):142–151

    PubMed  CAS  Google Scholar 

  143. De Vos M, Muller B, Borrell S et al (2012) Putative compensatory mutations in the rpoC gene of rifampin-resistant mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Age Chemother 57(2):827–832. doi:10.1128/AAC.01541-12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Burgos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burgos, M. (2013). Mycobacterium tuberculosis: Evolution, Host–Pathogen Interactions, and Implications for Tuberculosis Control. In: Sree Hari Rao, V., Durvasula, R. (eds) Dynamic Models of Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9224-5_5

Download citation

Publish with us

Policies and ethics