Skip to main content

Percolation Methods for SEIR Epidemics on Graphs

  • Chapter
  • First Online:
Dynamic Models of Infectious Diseases

Abstract

We review several connections between percolation and SEIR epidemic models. In the first part we analyze the role of percolation in representing or approximating an epidemic model; in the second part we discuss the role of percolation in modelling the random networks on which the spread of the infectious diseases takes place. At the end, we propose a class of models which are mathematically treatable and at the same time incorporate most of the desirable features of epidemic modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert R, Jeong H, Barabasi A-L (1999) Diameter of the World Wide Web. Nature 401:130

    Article  CAS  Google Scholar 

  2. Allen LJS (2008) An introduction to stochastic epidemic models. Summer School on Mathematical Modeling of Infectious Diseases, University of Alberta Lecture Notes

    Google Scholar 

  3. Allen LJS, Fienberg SE, Holland PW (2008) An introduction to stochastic epidemic models. Springer, Berlin

    Google Scholar 

  4. Anderson RM, May RM (1991) Infectious diseases of humans. Oxford University Press, Oxford

    Google Scholar 

  5. Andersson H (1999) Epidemic models and social networks. Math Scientist 24:128

    Google Scholar 

  6. Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. Springer Lecture Notes in Statistics. Springer, New York

    Book  Google Scholar 

  7. Athreya SR, Swart JM (2011) Survival of contact processes on the hierarchical group. Preprint. arXiv:0808.3732v3

    Google Scholar 

  8. Bailey NTJ (1975) The mathematical theory of infectious diseases and its applications, 2nd edn. Griffin, London

    Google Scholar 

  9. Balister PN, Bollobas B (2005) Continuum percolation in the square and the disk. Random Struct Algor 26:392–403

    Article  Google Scholar 

  10. Ball FG, Mollison D, Scalia-Tomba G (1997) Epidemics with two levels of mixing. Ann Appl Probab 7(1):46–89

    Article  Google Scholar 

  11. Ball F, Sirl D, Trapman P (2009) Threshold behaviour and final outcome of an epidemic on a random network with household structure. Adv Appl Probab 41:765–796

    Article  Google Scholar 

  12. Ball F, Sirl D, Trapman P (2010) Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Math Biosci 224(2):53–73

    Article  PubMed  Google Scholar 

  13. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  14. Barbour AD (1975) The duration of the closed stochastic epidemic. Biometrika 62:477–482

    Article  Google Scholar 

  15. Bartoszynski R (1972/73) On a certain model of an epidemic. Zastos Mat 13:139–151

    Google Scholar 

  16. Becker NG, Dietz K (1995) The effect of household distribution on transmission and control of highly infectious diseases. Math Biosci 127:207–219

    Article  PubMed  CAS  Google Scholar 

  17. Beffara V, Sidoravicius V (2006) Percolation. Encyclopedia of mathematical physics, vol 4. Elsevier, Amsterdam, pp 2120–2126

    Google Scholar 

  18. Benjamini I, Berger N (2001) The diameter of long-range percolation clusters on finite cycles. Random structures and algorithms 19:102–111

    Article  Google Scholar 

  19. Berger N (2002) Transience, recurrence and critical behavior for long-range percolation. Commun Math Phys 226:531–558

    Article  Google Scholar 

  20. Britton T (2005) Stochastic epidemic models: a survey. Cambridge University Press, New York.

    Google Scholar 

  21. Britton T, Deijfen M, Lagers AN, Lindholm M (2008) Epidemics on random graphs with tunable clustering. J Appl Probab 45(3):743–756

    Article  Google Scholar 

  22. Britton T, Janson S, Martin-Löf A (2007) Graphs with specified degree distributions, simple epidemics, and local vaccination strategies. Adv in Appl Probab 39(4):922–948

    Article  Google Scholar 

  23. Broadbent S, Hammersley J (1957) Percolation processes I. Crystals and mazes. Proc Cambridge Philos 53:629–641

    Article  CAS  Google Scholar 

  24. Caldarelli G (2007) Scale-Free networks complex webs in nature and technology. Oxford University Press, Oxford

    Book  Google Scholar 

  25. Caldarelli G, Capocci A, De Los Rios P, Munoz MA (2002) Scale-Free networks from varying vertex intrinsic fitness. Phys Rev Lett 89:258702

    Article  PubMed  CAS  Google Scholar 

  26. Camia F, Newman CM (2006) Two-dimensional critical percolation: the full scaling limit. Comm Math Phys 268(1):1–38

    Article  Google Scholar 

  27. Cardy J (2008) Conformal field theory and statistical mechanics. Exact methods in low-dimensional, statistical physics and quantum computing. Les Houches Summer School Lectures.

    Google Scholar 

  28. Cardy JL, Grassberger P (1985) Epidemic models and percolation. J Phys A-Math Gen 18:L267–L271

    Article  Google Scholar 

  29. Cecconi L, Gandolfi A (2011) SIR epidemics on a scale-free spatial nested modular network. arXiv:1107.1532

    Google Scholar 

  30. Chu X, Guan J, Zhang Z, Zhou S (2009) Epidemic spreading in weighted scale-free networks with community structure. J Stat Mech-Theory E 2009(07):P07043

    Google Scholar 

  31. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111

    Article  Google Scholar 

  32. Daley DJ, Gani J (2001) Epidemic modelling: an introduction. Cambridge University Press, Cambridge, UK

    Google Scholar 

  33. Davis S, Trapman P, Leirs H, Begon M, Heesterbeek JAP (2008) The abundance threshold for plague as a critical percolation phenomenon. Nature 454:634–637

    Article  PubMed  CAS  Google Scholar 

  34. Dawson D, Gorostiza L (2011) Percolation in an ultrametric space. Preprint. arXiv:1006.4400v2

    Google Scholar 

  35. Eames KTD, Keeling MJ (2002) Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc Natl Acad Sci USA 99:13330–13335

    Article  PubMed  CAS  Google Scholar 

  36. Erdös P, Rényi A (1959) On random graphs, I. Publicationes Mathematicae (Debrecen) 6:290–297

    Google Scholar 

  37. Erdös P, Rényi A (1960) The evolution of random graphs. Magyar Tud Akad Mat Kut Int Kliz-leményei 5:17–61

    Google Scholar 

  38. Eriksen KA, Hornquist M (2001) Scale-free growing networks imply linear preferential attachment. Phys Rev E 65(1):017102

    Article  Google Scholar 

  39. Gandolfi A, Keane M, De Valk V (1989) Extremal two-correlations of two-valued stationary one-dependent processes. J Probab Theory Rel 80:475–480

    Article  Google Scholar 

  40. Garet O, Marchand R (2004) Asymptotic shape for the chemical distance and first-passage percolation in random environment. ESAIM: Probab Statist 8:169–199

    Article  Google Scholar 

  41. Grassberger P (1983) On the critical behaviour of the general epidemic process and dynamical percolation. Math Biosci 63:157–172

    Article  Google Scholar 

  42. Grimmett GR (1999) Percolation. vol. 321 of Grundlehren der Mathematischen Wissenschaften, 2nd edn. Springer, Berlin

    Google Scholar 

  43. Gutfraind A (2010) Monotonic and non-monotonic epidemiological models on networks. Preprint. arXiv:1005.3470v2

    Google Scholar 

  44. Hethcote HW (2000)The mathematics of infectious diseases. J Soc Ind Appl Math 42:599–653

    Google Scholar 

  45. Keeling MJ (2005) Implications of network structure for epidemic dynamics. Theor Popul Biol 67:1–8

    Article  PubMed  Google Scholar 

  46. Kenah E, Miller JC (2011) Epidemic percolation networks, epidemic outcomes, and interventions. Interdiscip Perspect Infect Dis 2011:1–13

    Google Scholar 

  47. Kenah E, Robins JM (2007) Second look at the spread of epidemics on networks. Phys Rev E 76(3):036113

    Google Scholar 

  48. Kephart JO, Sorkin GB, Chess DM et al (1997) Fighting computer viruses. Sci Am 277:56–61

    Article  Google Scholar 

  49. Kephart JO, White SR, Chess DM (1993) Computers and epidemiology. IEEE Spectr 30:20–26

    Article  Google Scholar 

  50. Kermack W, McKendrick A (1927) A contribution to the mathematical theory of epidemics. Proc R Soc London A 115:700–721

    Article  Google Scholar 

  51. Kesten H (1980) The critical probability of bond percolation on the square lattice equals 1/2. Comm Math Phys 74:41–59

    Article  Google Scholar 

  52. Kesten H (1982) Percolation theory for mathematicians. Progress in Probability and Statistics, vol. 2, Birkhauser, Boston

    Book  Google Scholar 

  53. Koval V, Meester R, Trapman P (2011) Long-range percolation on the hierarchical lattice. Preprint. arXiv:1004.1251v1

    Google Scholar 

  54. Kuulasmaa K (1982) The spatial general epidemic and locally dependent random graphs. Appl Probab 19:745–758

    Article  Google Scholar 

  55. Kuulasmaa K, Zachary S (1984) On spatial general epidemics and bond percolation processes. J Appl Prob 21(4):911–914

    Article  Google Scholar 

  56. Lancichinetti A, Kivela M, Saramaki J, Fortunato S (2010) Characterizing the community structure of complex networks. PLoS One 5:e11976

    Article  PubMed  Google Scholar 

  57. Lefèvre C, Picard P (1990) A non-standard family of polynomials and the final size distribution of Reed-Frost epidemic processes. Adv Appl Prob 22:25–48

    Article  Google Scholar 

  58. Liu ZH, Hu BB (2005) Epidemic spreading in community networks. Europhys Lett 72:315

    Article  CAS  Google Scholar 

  59. Meester R, Trapman P (2010) Bounding basic characteristics of spatial epidemics with a new percolation model. Preprint.

    Google Scholar 

  60. Miller J (2007) Predicting the size and probability of epidemics in populations with heterogeneous infectiousness and susceptibility. Phys Rev E 76 010101(R)

    Google Scholar 

  61. Moreno Y, Gömez JB, Pacheco AF (2003) Epidemic incidence in correlated complex networks. Phys Rev E 68(3):035103

    Article  Google Scholar 

  62. Moslonka-Lefebvrea M, Pautassoc M, Jeger MJ (2009) Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering. J Theor Biol 260(3):402–411

    Article  Google Scholar 

  63. Neal P (2003) SIR epidemics on a bernoulli random graph. J Appl Probab 40(3):779–782

    Article  Google Scholar 

  64. Neal P, Martin-Löf A (1986) Symmetric sampling procedures, general epidemic processes and their threshold limit theorems. J Appl Probab 23(2):265–282

    Article  Google Scholar 

  65. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577

    Article  PubMed  CAS  Google Scholar 

  66. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113

    Article  CAS  Google Scholar 

  67. Newman MEJ, Watts DJ (1999) Scaling and percolation in the small-world network model. Phys Rev E 60:7332–7342

    Article  CAS  Google Scholar 

  68. Pan RK, Sinha S (2008) Modular networks with hierarchical organization: the dynamical implications of complex structure. Pramana: J Phys 71(2008):331–340

    Article  Google Scholar 

  69. Pellis L, Ferguson NM, Fraser C (2011) Epidemic growth rate and household reproduction number in communities of households, schools and workplaces. J Math Biol 63(4):691–734

    Article  PubMed  Google Scholar 

  70. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101(9):2658–2663

    Article  PubMed  CAS  Google Scholar 

  71. Read JM, Keeling MJ (2003) Disease evolution on networks: the role of contact structure. Proc R Soc B 270:699–708

    Article  PubMed  Google Scholar 

  72. Sander LM, Warren CP, Sokolov IM (2003) Epidemics, disorder, and percolation. Physica A 325(1):1–8

    Article  Google Scholar 

  73. Sander LM, Warren CP, Sokolov IM, Simon C, Koopman J (2002) Percolation on heterogeneous networks as a model for epidemics. Math Biosci 180:293–305

    Article  PubMed  CAS  Google Scholar 

  74. Schulman LS (1983) Long range percolation in one dimension. J Phys A Lett 16:L639-L641

    Google Scholar 

  75. Servedio VDP, Buttà P, Caldarelli G (2004) Vertex intrinsic fitness: how to produce arbitrary scale-free networks. Phys Rev E 70(5):056126

    Article  Google Scholar 

  76. Smirnov S (2005) Critical percolation and conformal invariance. In: XIVth International Congress on Mathematical Physics. World Scientific Publishing, Hackensack, pp 99–112

    Google Scholar 

  77. Stauffer D, Aharonyn A (1994) Introduction to percolation theory, 2nd edn. Taylor and Francis, London

    Google Scholar 

  78. Suna HJ, Gaoa ZY (2007) Physica A: Statistical Mechanics and its Applications 381:491–496

    Article  Google Scholar 

  79. Tan Z-J, Zou X-W, Jin Z-Z (2000) Percolation with long-range correlations for epidemic spreading. Phys Rev E 62:8409–8412

    Article  CAS  Google Scholar 

  80. Trapman P (2010) The growth of the infinite long-range percolation cluster. Ann Prob 38(4):1583–1608

    Google Scholar 

  81. Van den Berg J, Grimmett GR, Schinazi RB (1998) Dependent random graphs and spatial epidemics. Ann Appl Probab 8(2):317–336

    Article  Google Scholar 

  82. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442

    Google Scholar 

  83. Werner W (2004) Random planar curves and Schramm-Loewner evolutions. In: Lectures on Probability Theory and Statistics. Lecture Notes in Mathematics, vol 1840. Springer, Heidelberg, pp 107–195

    Google Scholar 

  84. Yukich, JE (2006) Ultra-small scale-free geometric networks. J Appl Probab 43:665–677

    Article  Google Scholar 

  85. Zhang Z, Zhou S, Zou T, Chen L, Guan J (2009) Different thresholds of bond percolation in scale-free networks with identical degree sequence. Phys Rev E 79(3):031110

    Article  Google Scholar 

  86. Zhou T, Fu ZQ, Wang BH (2006) Epidemic dynamics on complex networks. Prog Nat Sci 16(5):452–457

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gandolfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gandolfi, A. (2013). Percolation Methods for SEIR Epidemics on Graphs. In: Sree Hari Rao, V., Durvasula, R. (eds) Dynamic Models of Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9224-5_2

Download citation

Publish with us

Policies and ethics