Skip to main content

Hypoxia and Reactive Oxygen Species

  • Chapter
  • First Online:
Hypoxia and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

In recent years, superoxide and other reactive oxygen species (ROS) have been acknowledged to act not only as unwanted and even toxic byproducts of aerobic metabolism but also as important signaling molecules in various physiological and pathophysiological conditions. This has broadened the field of oxygen signaling in a substantial way given the fact that superoxide is derived from molecular oxygen. In this regard ROS and ROS-dependent signaling pathways appear to be connected in different ways to the pathways involved in the adaptation towards a low-oxygen environment.

One of the major pathways regulated by oxygen availability relies on the activity of hypoxia-inducible transcription factors (HIFs). Originally described to be only induced and activated under hypoxia, accumulating evidence suggests that HIFs play a more general role in response to diverse cellular activators and stressors, many of which use ROS as signal transducers. On the other hand, the HIF pathway has also been implicated in controlling some important ROS-generating systems. Thus, an important cross talk exists between ROS signaling systems and the HIF pathway which may have substantial consequences for the pathogenesis of various disorders including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agani FH, Pichiule P, Chavez JC, LaManna JC (2000) The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem 275:35863–35867

    PubMed  CAS  Google Scholar 

  • Ali SS, Hsiao M, Zhao HW, Dugan LL, Haddad GG et al (2012) Hypoxia-adaptation involves mitochondrial metabolic depression and decreased ROS leakage. PLoS One 7:e36801

    PubMed  CAS  Google Scholar 

  • Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–877

    PubMed  CAS  Google Scholar 

  • Archer S, Michelakis E (2002) The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O(2) sensors, and controversies. News Physiol Sci 17:131–137

    PubMed  CAS  Google Scholar 

  • Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R et al (1999) O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA 96:7944–7949

    PubMed  CAS  Google Scholar 

  • Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16:42–47

    PubMed  CAS  Google Scholar 

  • Bae SH, Jeong JW, Park JA, Kim SH, Bae MK et al (2004) Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 324:394–400

    PubMed  CAS  Google Scholar 

  • Beck I, Weinmann R, Caro J (1993) Characterization of hypoxia-responsive enhancer in the human erythropoietin gene shows presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood 82:704–711

    PubMed  CAS  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    PubMed  CAS  Google Scholar 

  • BelAiba RS, Djordjevic T, Bonello S, Flugel D, Hess J et al (2004) Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem 385:249–257

    PubMed  CAS  Google Scholar 

  • Belaiba RS, Bonello S, Zahringer C, Schmidt S, Hess J et al (2007a) Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell 18:4691–4697

    CAS  Google Scholar 

  • BelAiba RS, Djordjevic T, Petry A, Diemer K, Bonello S et al (2007b) NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med 42:446–459

    CAS  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP et al (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177:1029–1036

    PubMed  CAS  Google Scholar 

  • Berndt C, Lillig CH, Holmgren A (2007) Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292:H1227–H1236

    PubMed  CAS  Google Scholar 

  • Block K, Gorin Y (2012) Aiding and abetting roles of NOX oxidases in cellular transformation. Nat Rev Cancer 12:627–637

    PubMed  CAS  Google Scholar 

  • Block K, Gorin Y, New DD, Eid A, Chelmicki T et al (2010) The NADPH oxidase subunit p22phox inhibits the function of the tumor suppressor protein tuberin. Am J Pathol 176:2447–2455

    PubMed  CAS  Google Scholar 

  • Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J et al (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27:755–761

    PubMed  CAS  Google Scholar 

  • Boyer RF, McCleary CJ (1987) Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release. Free Radic Biol Med 3:389–395

    PubMed  CAS  Google Scholar 

  • Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47:1239–1253

    PubMed  CAS  Google Scholar 

  • Brown ST, Nurse CA (2008) Induction of HIF-2alpha is dependent on mitochondrial O2 consumption in an O2-sensitive adrenomedullary chromaffin cell line. Am J Physiol Cell Physiol 294:C1305–C1312

    PubMed  CAS  Google Scholar 

  • Carnesecchi S, Carpentier JL, Foti M, Szanto I (2006) Insulin-induced vascular endothelial growth factor expression is mediated by the NADPH oxidase NOX3. Exp Cell Res 312:3413–3424

    PubMed  CAS  Google Scholar 

  • Carrero P, Okamoto K, Coumailleau P, O’Brien S, Tanaka H et al (2000) Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol 20:402–415

    PubMed  CAS  Google Scholar 

  • Chamboredon S, Ciais D, Desroches-Castan A, Savi P, Bono F et al (2011) Hypoxia-inducible factor-1alpha mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell 22:3366–3378

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    PubMed  CAS  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    PubMed  CAS  Google Scholar 

  • Chen R, Liliental JE, Kowalski PE, Lu Q, Cohen SN (2011) Regulation of transcription of hypoxia-inducible factor-1alpha (HIF-1alpha) by heat shock factors HSF2 and HSF4. Oncogene 30:2570–2580

    PubMed  CAS  Google Scholar 

  • Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT et al (2010) Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 285:31277–31284

    PubMed  CAS  Google Scholar 

  • Deshmane SL, Mukerjee R, Fan S, Del Valle L, Michiels C et al (2009) Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem 284:11364–11373

    PubMed  CAS  Google Scholar 

  • Diebold I, Djordjevic T, Hess J, Görlach A (2008) Rac-1 promotes pulmonary artery smooth muscle cell proliferation by upregulation of plasminogen activator inhibitor-1: role of NFkappaB-dependent hypoxia-inducible factor-1alpha transcription. Thromb Haemost 100:1021–1028

    PubMed  CAS  Google Scholar 

  • Diebold I, Djordjevic T, Petry A, Hatzelmann A, Tenor H et al (2009) Phosphodiesterase 2 mediates redox-sensitive endothelial cell proliferation and angiogenesis by thrombin via Rac1 and NADPH oxidase 2. Circ Res 104:1169–1177

    PubMed  CAS  Google Scholar 

  • Diebold I, Flugel D, Becht S, Belaiba RS, Bonello S et al (2010a) The hypoxia-inducible factor-2alpha is stabilized by oxidative stress involving NOX4. Antioxid Redox Signal 13:425–436

    CAS  Google Scholar 

  • Diebold I, Petry A, Djordjevic T, Belaiba RS, Fineman J et al (2010b) Reciprocal regulation of Rac1 and PAK-1 by HIF-1alpha: a positive-feedback loop promoting pulmonary vascular remodeling. Antioxid Redox Signal 13:399–412

    CAS  Google Scholar 

  • Diebold I, Petry A, Hess J, Gorlach A (2010c) The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 21:2087–2096

    CAS  Google Scholar 

  • Diebold I, Petry A, Sabrane K, Djordjevic T, Hess J et al (2012) The HIF1 target gene NOX2 promotes angiogenesis through urotensin-II. J Cell Sci 125:956–964

    PubMed  CAS  Google Scholar 

  • Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT et al (2009) Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324:1289–1293

    PubMed  CAS  Google Scholar 

  • Djordjevic T, BelAiba RS, Bonello S, Pfeilschifter J, Hess J et al (2005a) Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells. Arterioscler Thromb Vasc Biol 25:519–525

    CAS  Google Scholar 

  • Djordjevic T, Pogrebniak A, BelAiba RS, Bonello S, Wotzlaw C et al (2005b) The expression of the NADPH oxidase subunit p22phox is regulated by a redox-sensitive pathway in endothelial cells. Free Radic Biol Med 38:616–630

    CAS  Google Scholar 

  • Doege K, Heine S, Jensen I, Jelkmann W, Metzen E (2005) Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact. Blood 106:2311–2317

    PubMed  CAS  Google Scholar 

  • Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A et al (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903

    PubMed  CAS  Google Scholar 

  • Ema M, Hirota K, Mimura J, Abe H, Yodoi J et al (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18:1905–1914

    PubMed  CAS  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    PubMed  CAS  Google Scholar 

  • Fatrai S, Wierenga AT, Daenen SM, Vellenga E, Schuringa JJ (2011) Identification of HIF2alpha as an important STAT5 target gene in human hematopoietic stem cells. Blood 117:3320–3330

    PubMed  CAS  Google Scholar 

  • Flashman E, Davies SL, Yeoh KK, Schofield CJ (2010) Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents. Biochem J 427:135–142

    PubMed  CAS  Google Scholar 

  • Frede S, Stockmann C, Freitag P, Fandrey J (2006) Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J 396:517–527

    PubMed  CAS  Google Scholar 

  • Fukuda R, Kelly B, Semenza GL (2003) Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res 63:2330–2334

    PubMed  CAS  Google Scholar 

  • Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV et al (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    PubMed  CAS  Google Scholar 

  • Galban S, Gorospe M (2009) Factors interacting with HIF-1alpha mRNA: novel therapeutic targets. Curr Pharm Des 15:3853–3860

    PubMed  CAS  Google Scholar 

  • Galban S, Kuwano Y, Pullmann R Jr, Martindale JL, Kim HH et al (2008) RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha. Mol Cell Biol 28:93–107

    PubMed  CAS  Google Scholar 

  • Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ et al (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781–794

    PubMed  CAS  Google Scholar 

  • Gong Y, Agani FH (2005) Oligomycin inhibits HIF-1alpha expression in hypoxic tumor cells. Am J Physiol Cell Physiol 288:C1023–C1029

    PubMed  CAS  Google Scholar 

  • Gorlach A (2009) Regulation of HIF-1 at the Transcriptional Level. Curr Pharm Des 15(33):3844–3852

    PubMed  Google Scholar 

  • Görlach A, Bonello S (2008) The cross-talk between NF-kappaB and HIF-1: further evidence for a significant liaison. Biochem J 412:e17–19

    PubMed  Google Scholar 

  • Görlach A, Kietzmann T (2007) Superoxide and derived reactive oxygen species in the regulation of hypoxia-inducible factors. Methods Enzymol 435:421–446

    PubMed  Google Scholar 

  • Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F et al (2000a) A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 87:26–32

    CAS  Google Scholar 

  • Görlach A, Camenisch G, Kvietikova I, Vogt L, Wenger RH et al (2000b) Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions. Biochim Biophys Acta 1493:125–134

    Google Scholar 

  • Görlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U et al (2001) Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox)-containing NADPH oxidase. Circ Res 89:47–54

    PubMed  Google Scholar 

  • Görlach A, Kietzmann T, Hess J (2002) Redox signaling through NADPH oxidases: involvement in vascular proliferation and coagulation. Ann NY Acad Sci 973:505–507

    PubMed  Google Scholar 

  • Goyal P, Weissmann N, Grimminger F, Hegel C, Bader L et al (2004) Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radic Biol Med 36:1279–1288

    PubMed  CAS  Google Scholar 

  • Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7:205–213

    PubMed  CAS  Google Scholar 

  • Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT (2008) Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28:718–731

    PubMed  CAS  Google Scholar 

  • Haddad JJ, Land SC (2001) A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. FEBS Lett 505:269–274

    PubMed  CAS  Google Scholar 

  • Haddad JJ, Olver RE, Land SC (2000) Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and NF-kappa B redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. J Biol Chem 275:21130–21139

    PubMed  CAS  Google Scholar 

  • Hagele S, Kuhn U, Boning M, Katschinski DM (2009) Cytoplasmic polyadenylation-element-binding protein (CPEB) 1 and 2 bind to the HIF-1alpha mRNA 3’-UTR and modulate HIF-1alpha protein expression. Biochem J 417:235–246

    PubMed  Google Scholar 

  • Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302:1975–1978

    PubMed  CAS  Google Scholar 

  • Hamanaka RB, Chandel NS (2009) Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol 21:894–899

    PubMed  CAS  Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    PubMed  CAS  Google Scholar 

  • Hawkins BJ, Madesh M, Kirkpatrick CJ, Fisher AB (2007) Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol Biol Cell 18:2002–2012

    PubMed  CAS  Google Scholar 

  • He L, Chen J, Dinger B, Sanders K, Sundar K et al (2002) Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice. Am J Physiol Cell Physiol 282:C27–C33

    PubMed  CAS  Google Scholar 

  • He L, Dinger B, Sanders K, Hoidal J, Obeso A et al (2005) Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells. Am J Physiol Lung Cell Mol Physiol 289:L916–L924

    PubMed  CAS  Google Scholar 

  • Hirota K, Fukuda R, Takabuchi S, Kizaka-Kondoh S, Adachi T et al (2004) Induction of hypoxia-inducible factor 1 activity by muscarinic acetylcholine receptor signaling. J Biol Chem 279:41521–41528

    PubMed  CAS  Google Scholar 

  • Hoffman DL, Brookes PS (2009) Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem 284:16236–16245

    PubMed  CAS  Google Scholar 

  • Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH et al (1991) Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252:954–958

    PubMed  CAS  Google Scholar 

  • Hoffman DL, Salter JD, Brookes PS (2007) Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol 292:H101–H108

    PubMed  CAS  Google Scholar 

  • Hsieh CH, Wu CP, Lee HT, Liang JA, Yu CY et al (2012) NADPH oxidase subunit 4 mediates cycling hypoxia-promoted radiation resistance in glioblastoma multiforme. Free Radic Biol Med 53:649–658

    PubMed  CAS  Google Scholar 

  • Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    PubMed  CAS  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    PubMed  CAS  Google Scholar 

  • Huang C, Han Y, Wang Y, Sun X, Yan S et al (2009) SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J 28:2748–2762

    PubMed  CAS  Google Scholar 

  • Hui AS, Bauer AL, Striet JB, Schnell PO, Czyzyk-Krzeska MF (2006) Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J 20:466–475

    PubMed  CAS  Google Scholar 

  • Hybertson BM, Gao B, Bose SK, McCord JM (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 32:234–246

    PubMed  CAS  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    PubMed  CAS  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    PubMed  CAS  Google Scholar 

  • Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272:19253–19260

    PubMed  CAS  Google Scholar 

  • Jung SN, Yang WK, Kim J, Kim HS, Kim EJ et al (2008) Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29:713–721

    PubMed  CAS  Google Scholar 

  • Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    PubMed  CAS  Google Scholar 

  • Khatri JJ, Johnson C, Magid R, Lessner SM, Laude KM et al (2004) Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation 109:520–525

    PubMed  CAS  Google Scholar 

  • Kietzmann T, Samoylenko A, Roth U, Jungermann K (2003) Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood 101:907–914

    PubMed  CAS  Google Scholar 

  • Kim HH, Lee SE, Chung WJ, Choi Y, Kwack K et al (2002) Stabilization of hypoxia-inducible factor-1alpha is involved in the hypoxic stimuli-induced expression of vascular endothelial growth factor in osteoblastic cells. Cytokine 17:14–27

    PubMed  CAS  Google Scholar 

  • Kleikers PW, Wingler K, Hermans JJ, Diebold I, Altenhofer S et al (2012) NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med (Berl) 90:1391–1406

    CAS  Google Scholar 

  • Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ (2003) Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 63:1764–1768

    PubMed  CAS  Google Scholar 

  • Kohl R, Zhou J, Brune B (2006) Reactive oxygen species attenuate nitric-oxide-mediated hypoxia-inducible factor-1alpha stabilization. Free Radic Biol Med 40:1430–1442

    PubMed  Google Scholar 

  • Koivunen P, Tiainen P, Hyvarinen J, Williams KE, Sormunen R et al (2007) An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J Biol Chem 282:30544–30552

    PubMed  CAS  Google Scholar 

  • Koshikawa N, Hayashi J, Nakagawara A, Takenaga K (2009) Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway. J Biol Chem 284:33185–33194

    PubMed  CAS  Google Scholar 

  • Lambeth JD, Kawahara T, Diebold B (2007) Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 43:319–331

    PubMed  CAS  Google Scholar 

  • Lando D, Pongratz I, Poellinger L, Whitelaw ML (2000) A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1alpha and the HIF-like factor. J Biol Chem 275:4618–4627

    PubMed  CAS  Google Scholar 

  • Lang KJ, Kappel A, Goodall GJ (2002) Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13:1792–1801

    PubMed  CAS  Google Scholar 

  • Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21:3995–4004

    PubMed  CAS  Google Scholar 

  • Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B et al (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74

    PubMed  Google Scholar 

  • Li J, Wang JJ, Yu Q, Chen K, Mahadev K et al (2010) Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood-retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes 59:1528–1538

    PubMed  CAS  Google Scholar 

  • Liu Q, Berchner-Pfannschmidt U, Moller U, Brecht M, Wotzlaw C et al (2004) A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci USA 101:4302–4307

    PubMed  CAS  Google Scholar 

  • Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ (2006a) Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290:L2–L10

    CAS  Google Scholar 

  • Liu LZ, Hu XW, Xia C, He J, Zhou Q et al (2006b) Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 41:1521–1533

    CAS  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686

    PubMed  CAS  Google Scholar 

  • Maier CM, Chan PH (2002) Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist 8:323–334

    PubMed  CAS  Google Scholar 

  • Makino Y, Cao R, Svensson K, Bertilsson G, Asman M et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554

    PubMed  CAS  Google Scholar 

  • Malec V, Gottschald OR, Li S, Rose F, Seeger W et al (2010) HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radic Biol Med 48:1626–1635

    PubMed  CAS  Google Scholar 

  • Maranchie JK, Zhan Y (2005) Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res 65:9190–9193

    PubMed  CAS  Google Scholar 

  • Mecinovic J, Chowdhury R, Flashman E, Schofield CJ (2009) Use of mass spectrometry to probe the nucleophilicity of cysteinyl residues of prolyl hydroxylase domain 2. Anal Biochem 393:215–221

    PubMed  CAS  Google Scholar 

  • Mehta JP, Campian JL, Guardiola J, Cabrera JA, Weir EK et al (2008) Generation of oxidants by hypoxic human pulmonary and coronary smooth-muscle cells. Chest 133:1410–1414

    PubMed  Google Scholar 

  • Mittal M, Roth M, Konig P, Hofmann S, Dony E et al (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258–267

    PubMed  CAS  Google Scholar 

  • Moon EJ, Sonveaux P, Porporato PE, Danhier P, Gallez B et al (2010) NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc Natl Acad Sci USA 107:20477–20482

    PubMed  CAS  Google Scholar 

  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503

    PubMed  CAS  Google Scholar 

  • Murdoch CE, Grieve DJ, Cave AC, Looi YH, Shah AM (2006) NADPH oxidase and heart failure. Curr Opin Pharmacol 6:148–153

    PubMed  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  • Nair D, Dayyat EA, Zhang SX, Wang Y, Gozal D (2011) Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS One 6:e19847

    PubMed  CAS  Google Scholar 

  • Naranjo-Suarez S, Carlson BA, Tsuji PA, Yoo MH, Gladyshev VN et al (2012) HIF-independent regulation of thioredoxin reductase 1 contributes to the high levels of reactive oxygen species induced by hypoxia. PLoS One 7:e30470

    PubMed  CAS  Google Scholar 

  • Nayak BK, Feliers D, Sudarshan S, Friedrichs WE, Day RT et al (2012) Stabilization of HIF-2alpha through redox regulation of mTORC2 activation and initiation of mRNA translation. Oncogene 32(26):3147–3155

    PubMed  Google Scholar 

  • Nishi K, Oda T, Takabuchi S, Oda S, Fukuda K et al (2008) LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid Redox Signal 10:983–995

    PubMed  CAS  Google Scholar 

  • Nytko KJ, Maeda N, Schlafli P, Spielmann P, Wenger RH et al (2011) Vitamin C is dispensable for oxygen sensing in vivo. Blood 117:5485–5493

    PubMed  CAS  Google Scholar 

  • Oh YT, Lee JY, Yoon H, Lee EH, Baik HH et al (2008) Lipopolysaccharide induces hypoxia-inducible factor-1 alpha mRNA expression and activation via NADPH oxidase and Sp1-dependent pathway in BV2 murine microglial cells. Neurosci Lett 431:155–160

    PubMed  CAS  Google Scholar 

  • Page EL, Robitaille GA, Pouyssegur J, Richard DE (2002) Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 277:48403–48409

    PubMed  CAS  Google Scholar 

  • Page EL, Chan DA, Giaccia AJ, Levine M, Richard DE (2008) Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion. Mol Biol Cell 19:86–94

    PubMed  CAS  Google Scholar 

  • Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ et al (2010) Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 21:3247–3257

    PubMed  CAS  Google Scholar 

  • Petry A, Weitnauer M, Gorlach A (2010) Receptor activation of NADPH oxidases. Antioxid Redox Signal 13:467–487

    PubMed  CAS  Google Scholar 

  • Petry A, Belaiba RS, Weitnauer M, Görlach A (2012) Inhibition of endothelial nitric oxyde synthase increases capillary formation via Rac1-dependent induction of hypoxia-inducible factor-1alpha and plasminogen activator inhibitor-1. Thromb Haemost 108:849–862

    PubMed  CAS  Google Scholar 

  • Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92:967–1003

    PubMed  CAS  Google Scholar 

  • Pugh CW, O’Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272:11205–11214

    PubMed  CAS  Google Scholar 

  • Richard DE, Berra E, Pouyssegur J (2000) Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 275:26765–26771

    PubMed  CAS  Google Scholar 

  • Rigoulet M, Yoboue ED, Devin A (2011) Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 14:459–468

    PubMed  CAS  Google Scholar 

  • Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS et al (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807–811

    PubMed  CAS  Google Scholar 

  • Roy A, Rozanov C, Mokashi A, Daudu P, Al-mehdi AB et al (2000) Mice lacking in gp91 phox subunit of NAD(P)H oxidase showed glomus cell [Ca(2+)](i) and respiratory responses to hypoxia. Brain Res 872:188–193

    PubMed  CAS  Google Scholar 

  • Ryu JH, Li SH, Park HS, Park JW, Lee B et al (2010) NEDD8 conjugation stabilizes HIF-alpha subunits reactive oxygen species-dependently. J Biol Chem 286(9):6963–6970

    PubMed  Google Scholar 

  • Ryu JH, Li SH, Park HS, Park JW, Lee B et al (2011) Hypoxia-inducible factor alpha subunit stabilization by NEDD8 conjugation is reactive oxygen species-dependent. J Biol Chem 286:6963–6970

    PubMed  CAS  Google Scholar 

  • Sanchez M, Galy B, Muckenthaler MU, Hentze MW (2007) Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat Struct Mol Biol 14:420–426

    PubMed  CAS  Google Scholar 

  • Sandau KB, Zhou J, Kietzmann T, Brune B (2001) Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 276:39805–39811

    PubMed  CAS  Google Scholar 

  • Schepens B, Tinton SA, Bruynooghe Y, Beyaert R, Cornelis S (2005) The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res 33:6884–6894

    PubMed  CAS  Google Scholar 

  • Schulz E, Wenzel P, Munzel T, Daiber A (2012) Mitochondrial redox signaling: interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal

    Google Scholar 

  • Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    PubMed  CAS  Google Scholar 

  • Shatrov VA, Sumbayev VV, Zhou J, Brune B (2003) Oxidized low-density lipoprotein (oxLDL) triggers hypoxia-inducible factor-1alpha (HIF-1alpha) accumulation via redox-dependent mechanisms. Blood 101:4847–4849

    PubMed  CAS  Google Scholar 

  • Srinivas V, Leshchinsky I, Sang N, King MP, Minchenko A et al (2001) Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J Biol Chem 276:21995–21998

    PubMed  CAS  Google Scholar 

  • Stiehl DP, Jelkmann W, Wenger RH, Hellwig-Burgel T (2002) Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 512:157–162

    PubMed  CAS  Google Scholar 

  • Tacchini L, De Ponti C, Matteucci E, Follis R, Desiderio MA (2004) Hepatocyte growth factor-activated NF-kappaB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines. Carcinogenesis 25:2089–2100

    PubMed  CAS  Google Scholar 

  • Thomas JD, Johannes GJ (2007) Identification of mRNAs that continue to associate with polysomes during hypoxia. RNA 13:1116–1131

    PubMed  CAS  Google Scholar 

  • Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    PubMed  CAS  Google Scholar 

  • Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E (2002) Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 277:27975–27981

    PubMed  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    PubMed  CAS  Google Scholar 

  • Tuttle SW, Maity A, Oprysko PR, Kachur AV, Ayene IS et al (2007) Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration: implications for the mechanism of HIF-1alpha stabilization under moderate hypoxia. J Biol Chem 282:36790–36796

    PubMed  CAS  Google Scholar 

  • Urao N, McKinney RD, Fukai T, Ushio-Fukai M (2012) NADPH oxidase 2 regulates bone marrow microenvironment following hindlimb ischemia: role in reparative mobilization of progenitor cells. Stem Cells 30:923–934

    PubMed  CAS  Google Scholar 

  • van Uden P, Kenneth NS, Rocha S (2008) Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J 412:477–484

    PubMed  CAS  Google Scholar 

  • Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ (2001) Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98:296–302

    PubMed  CAS  Google Scholar 

  • Wang GL, Jiang BH,SemenzaGL(1995) Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem Biophys Res Commun 212(2):550–556

    Google Scholar 

  • Wang M, Kirk JS, Venkataraman S, Domann FE, Zhang HJ et al (2005) Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Oncogene 24:8154–8166

    PubMed  CAS  Google Scholar 

  • Wang W, Fang H, Groom L, Cheng A, Zhang W et al (2008) Superoxide flashes in single mitochondria. Cell 134:279–290

    PubMed  CAS  Google Scholar 

  • Weissmann N, Zeller S, Schafer RU, Turowski C, Ay M et al (2006) Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol 34:505–513

    PubMed  CAS  Google Scholar 

  • Welsh SJ, Bellamy WT, Briehl MM, Powis G (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62:5089–5095

    PubMed  CAS  Google Scholar 

  • Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16:1151–1162

    PubMed  CAS  Google Scholar 

  • Wenger RH (2006) Mitochondria: oxygen sinks rather than sensors? Med Hypotheses 66:380–383

    PubMed  CAS  Google Scholar 

  • Wenner CE (2012) Targeting mitochondria as a therapeutic target in cancer. J Cell Physiol 227:450–456

    PubMed  CAS  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653

    PubMed  CAS  Google Scholar 

  • Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR et al (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67:10823–10830

    PubMed  CAS  Google Scholar 

  • Yang J, Staples O, Thomas LW, Briston T, Robson M et al (2012) Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression. J Clin Invest 122:600–611

    PubMed  CAS  Google Scholar 

  • Yoshida K, Kirito K, Yongzhen H, Ozawa K, Kaushansky K et al (2008) Thrombopoietin (TPO) regulates HIF-1alpha levels through generation of mitochondrial reactive oxygen species. Int J Hematol 88:43–51

    PubMed  CAS  Google Scholar 

  • Young RM, Wang SJ, Gordan JD, Ji X, Liebhaber SA et al (2008) Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem 283:16309–16319

    PubMed  CAS  Google Scholar 

  • Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545

    PubMed  CAS  Google Scholar 

  • Zhou J, Callapina M, Goodall GJ, Brune B (2004) Functional integrity of nuclear factor kappaB, phosphatidylinositol 3’-kinase, and mitogen-activated protein kinase signaling allows tumor necrosis factor alpha-evoked Bcl-2 expression to provoke internal ribosome entry site-dependent translation of hypoxia-inducible factor 1alpha. Cancer Res 64:9041–9048

    PubMed  CAS  Google Scholar 

  • Zimmer M, Ebert BL, Neil C, Brenner K, Papaioannou I et al (2008) Small-molecule inhibitors of HIF-2a translation link its 5’UTR iron-responsive element to oxygen sensing. Mol Cell 32:838–848

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG GO709/4-5 and the Seventh European Framework Programme (Metoxia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Görlach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Görlach, A. (2014). Hypoxia and Reactive Oxygen Species. In: Melillo, G. (eds) Hypoxia and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9167-5_4

Download citation

Publish with us

Policies and ethics