Skip to main content

Paratransgenic Control of Leishmaniasis: New Developments

  • Chapter
  • First Online:
Pathogenesis of Leishmaniasis

Abstract

Leishmaniasis is a devastating neglected tropical disease caused by approximately 20 different species of Leishmania parasites. These obligate intercellular protozoa are spread naturally to humans by female phlebotomine sand flies of the genus Phlebotomus (Old World) or Lutzomyia (New World). Depending on the infecting parasite and the innate host-immune response, the clinical manifestation of leishmaniasis ranges from cutaneous ulcerations to system infections. It is therefore not surprising that treatment of leishmaniasis varies greatly with the type of disease (cutaneous, mucosal, or visceral). Currently, no vaccines are available for any form of leishmaniasis, and control of disease has focused largely on vector eradication through pesticide use. The Visceral Leishmaniasis (VL) Elimination Initiative was launched in the 2005 between the governments of India, Nepal and Bangladesh and the WHO. The aim of this initiative is to reduce annual VL incidence in this region to below 1/10,000 inhabitance by 2015. Despite some early success, recent reports are now citing difficulties in sustaining prolonged spraying campaigns and emerging public concerns regarding insecticide use and environmental toxicity. Further, new populations of sand flies in these endemic regions in India have now gained resistance to DDT. For these reasons, alternative and integrative vector control strategies are needed to reach the VL elimination target date in 2015.

The paratransgenic strategy was initially developed to control the vectorial transmission of Trypanosoma cruzi, the protozoan parasite responsible for Chagas disease, by blood-sucking triatomine bugs. In this strategy, bacterial flora native to disease-transmitting vectors are isolated and genetically transformed in vitro to export molecules that interfere with pathogen transmission. The genetically altered symbionts are then re-introduced into the host vector where expression of engineered molecules affects the host’s ability to transmit the pathogen. In this review, we will discuss the strategy that we have adopted to adapt the paratransgenic approach to control vectorial transmission of leishmania in sand flies, and describe how two effector molecules, antimicrobial peptides (AMP’s) and single chain antibodies (scFv’s), can be utilized to specifically target the parasites in sand fly. Further, we address the evolving concepts related to field dispersal of engineered bacteria as part of the paratransgenic control strategy coupled with the attendant risk assessment evaluation that is critical for field release. We conclude with the development and testing of a “barrier” method of containment and dispersal for paratransgenic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbassi F, Raja Z, Oury B et al (2013) Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide. Biochimie 95:388–399

    Article  PubMed  CAS  Google Scholar 

  • Akuffo H, Hultmark D, Engstom A et al (1998) Drosophila antibacterial protein, cecropin A, differentially affects non-bacterial organisms such as Leishmania in a manner different from other amphipathic peptides. Int J Mol Med 1:77–82

    PubMed  CAS  Google Scholar 

  • Andreu D, Ubach J, Boman A et al (1992) Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett 296:190–194

    Article  PubMed  CAS  Google Scholar 

  • Baines S (1956) The role of the symbiotic bacteria in the nutrition of Rhodnius prolixus (Hemiptera). J Exp Biol 33:533–541

    CAS  Google Scholar 

  • Beard CB, Mason PW, Aksoy S et al (1992) Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus. Am J Trop Med Hyg 46:195–200

    PubMed  CAS  Google Scholar 

  • Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Beard CB, Cordon-Rosales C, Durvasula RV (2002) Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 47:123–141

    Article  PubMed  CAS  Google Scholar 

  • Bextine B, Thorvilson H (2002) Field applications of bait-formulated Beauveria bassiana alginate pellets for biological control of the red imported fire ant. Environ Entomol 31:746–752

    Article  CAS  Google Scholar 

  • Casanova C (2001) A soil emergence trap for collections of phlebotomine sand flies. Mem Inst Oswaldo Cruz 96:273–275

    Article  PubMed  CAS  Google Scholar 

  • Chelbi I, Kaabi B, Derbali M et al (2008) Zooprophylaxis: impact of breeding rabbits around houses on reducing the indoor abundance of Phlebotomus papatasi. Vector Borne Zoonotic Dis 8:741–747

    Article  PubMed  Google Scholar 

  • Dasch GA, Weiss E, Chang S (1984) Endosymbionts in insects. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Dhiman RC, Raghavendra K, Kumar V et al (2003) Susceptibility status of Phlebotomus argentipes to insecticides in districts Vaishaii and Patna (Bihar). J Commun Dis 35:49–51

    PubMed  CAS  Google Scholar 

  • Diaz-Achirica P, Ubach J, Guinea A et al (1998) The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1-8)M(1-18), a synthetic cecropin A-melittin hybrid peptide. Biochem J 330:453–460

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dillion RJ, El Kordy E, Lane RP (1996) The prevalence of a microbiota in the digestive tract of Phlebotomus papatasi. Ann Trop Med Parasitol 90:669–673

    Google Scholar 

  • Dinesh DS, Das ML, Picado A et al (2010) Insecticide susceptibility of Phlebotomus argentipes in visceral leishmaniasis endemic districts in India and Nepal. PLoS Negl Trop Dis 4:e859

    Article  PubMed Central  PubMed  Google Scholar 

  • Dougherty MJ, Hamilton JGC (1997) Dodecanoic acid is the oviposition pheromone of Lutzomyia longipalpis. J Chem Ecol 23:2657–2671

    Article  CAS  Google Scholar 

  • Dougherty MJ, Hamilton JG, Ward RD (1993) Semiochemical mediation of oviposition by the phlebotomine sandfly Lutzomyia longipalpis. Med Vet Entomol 7:219–224

    Article  PubMed  CAS  Google Scholar 

  • Dougherty M, Guerin PM, Ward RD (1995) Identification of oviposition attractants for the sand fly Lutzomyia longipalpis (Diptera, Psychodidae) in volatiles of feces from vertebrates. Physiol Entomol 20:23–32

    Article  Google Scholar 

  • Durvasula RV, Gumbs A, Panackal A et al (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A 94:3274–3278

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Durvasula RV, Gumbs A, Panackal A et al (1999a) Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhodnii. Med Vet Entomol 13:115–119

    Article  PubMed  CAS  Google Scholar 

  • Durvasula RV, Kroger A, Goodwin M et al (1999b) Strategy for introduction of foreign genes into field populations of Chagas disease vectors. Ann Entomol Soc Am 92:937–943

    CAS  Google Scholar 

  • Durvasula RV, Sundaram RK, Kirsch P et al (2008) Genetic transformation of a Corynebacterial symbiont from the Chagas disease vector Triatoma infestans. Exp Parasitol 119:94–98

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Elnaiem DE, Ward RD (1992) Oviposition attractants and stimulants for the sandfly Lutzomyia longipalpis (Diptera: Psychodidae). J Med Entomol 29:5–12

    PubMed  CAS  Google Scholar 

  • Fieck A, Hurwitz I, Kang AS et al (2010) Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol 125:342–347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghosh KN, Bhattacharya A (1991) Breeding places of Phlebotomus argentipes Annandale and Brunetti (Diptera: Psychodidae) in West Bengal, India. Parassitologia 33:267–272

    PubMed  Google Scholar 

  • Ghosh KN, Mukhopadhyay JM, Guzman H et al (1999) Interspecific hybridization and genetic variability of Phlebotomus sandflies. Med Vet Entomol 13:78–88

    Article  PubMed  CAS  Google Scholar 

  • Guerin PJ, Olliaro P, Sundar S et al (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2:494–501

    Article  PubMed  Google Scholar 

  • Haines LR, Thomas JM, Jackson AM et al (2009) Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18. PLoS Negl Trop Dis 3:e373

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hillesland H, Read A, Subhadra B et al (2008) Identification of aerobic gut bacteria from the kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am J Trop Med Hyg 79:881–886

    PubMed  Google Scholar 

  • Hurwitz I, Hillesland H, Fieck A et al (2011) The paratransgenic sand fly: a platform for control of Leishmania transmission. Parasit Vectors 4:82

    Article  PubMed Central  PubMed  Google Scholar 

  • Ilango K, Dhanda V, Srinivasan R et al (1994) Phlebotomine sandflies (Diptera: Psychodidae) of Tamil Nadu and Pondicherry, southern India, in relation to visceral leishmaniasis. Ann Trop Med Parasitol 88:413–431

    PubMed  CAS  Google Scholar 

  • Kamhawi S, Modi GB, Pimenta PF et al (2000) The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology 121:25–33

    Article  PubMed  CAS  Google Scholar 

  • Kamhawi S, Ramalho-Ortigao M, Pham VM et al (2004) A role for insect galectins in parasite survival. Cell 119:329–341

    Article  PubMed  CAS  Google Scholar 

  • Kesari S, Kishore K, Palit A et al (2000) An entomological field evaluation of larval biology of sandfly in Kala-azar endemic focus of Bihar—exploration of larval control tool. J Commun Dis 32:284–288

    PubMed  CAS  Google Scholar 

  • Kishore K, Kumar V, Kesari S et al (2004) Susceptibility of Phlebotomus argentipes against DDT in endemic Districts of North Bihar, India. J Commun Dis 36:41–44

    PubMed  CAS  Google Scholar 

  • Kishore K, Kumar V, Kesari S et al (2006) Vector control in leishmaniasis. Indian J Med Res 123:467–472

    PubMed  CAS  Google Scholar 

  • Kreil G, Haiml L, Suchanek G (1980) Stepwise cleavage of the pro part of promelittin by dipeptidylpeptidase IV. Evidence for a new type of precursor–product conversion. Eur J Biochem 111:49–58

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Kesari S, Dinesh DS et al (2009) A report on the indoor residual spraying (IRS) in the control of Phlebotomus argentipes, the vector of visceral leishmaniasis in Bihar (India): an initiative towards total elimination targeting 2015 (series-1). The Free Library [Online]. Available: http://www.thefreelibrary.com/

  • Lebeau AM, Brennen WN, Aggarwal S et al (2009) Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol Cancer Ther 8:1378–1386

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin WC, Yu DG, Yang MC (2005) pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Colloids Surf B Biointerfaces 44:143–151

    Article  PubMed  CAS  Google Scholar 

  • Luque-Ortega JR, Saugar JM, Chiva C et al (2003) Identification of new leishmanicidal peptide lead structures by automated real-time monitoring of changes in intracellular ATP. Biochem J 375:221–230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lynn MA, Kindrachuk J, Marr AK et al (2011) Effect of BMAP-28 antimicrobial peptides on Leishmania major promastigote and amastigote growth: role of leishmanolysin in parasite survival. PLoS Negl Trop Dis 5:e1141

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mahoney AB, Sacks DL, Saraiva E et al (1999) Intra-species and stage-specific polymorphisms in lipophosphoglycan structure control Leishmania donovani-sand fly interactions. Biochemistry 38:9813–9823

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ML, Saugar JM, Dellisanti M et al (2005) Temporins, small antimicrobial peptides with leishmanicidal activity. J Biol Chem 280:984–990

    Article  PubMed  CAS  Google Scholar 

  • Markiv A, Anani B, Durvasula RV et al (2011) Module based antibody engineering: a novel synthetic REDantibody. J Immunol Methods 364:40–49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matthews S, Sreehari Rao V, Durvasula RV (2011) Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus. Parasit Vectors 4:77

    Article  PubMed Central  PubMed  Google Scholar 

  • Mccall PJ, Cameron MM (1995) Oviposition pheromones in insect vectors. Parasitol Today 11:352–355

    Article  PubMed  CAS  Google Scholar 

  • Moncaz A, Faiman R, Kirstein O et al (2012) Breeding sites of Phlebotomus sergenti, the sand fly vector of cutaneous leishmaniasis in the Judean Desert. PLoS Negl Trop Dis 6:e1725

    Article  PubMed Central  PubMed  Google Scholar 

  • Mukhopadhyay AK, Chakravarty AK, Kureel VR et al (1987) Resurgence of Phlebotomus argentipes & Ph. papatasi in parts of Bihar (India) after DDT spraying. Indian J Med Res 85:158–160

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay AK, Hati AK, Chakraborty S et al (1996) Effect of DDT on Phlebotomus sandflies in Kala-Azar endemic foci in West Bengal. J Commun Dis 28:171–175

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay J, Braig HR, Rowton ED et al (2012) Naturally occurring culturable aerobic gut flora of adult Phlebotomus papatasi, vector of Leishmania major in the Old World. PLoS One 7:e35748

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peterkova-Koci K, Robles-Murguia M, Ramalho-Ortigao M et al (2012) Significance of bacteria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Parasit Vectors 5:145

    Article  PubMed Central  PubMed  Google Scholar 

  • Picado A, Das ML, Kumar V et al (2010) Effect of village-wide use of long-lasting insecticidal nets on visceral Leishmaniasis vectors in India and Nepal: a cluster randomized trial. PLoS Negl Trop Dis 4:e587

    Article  PubMed Central  PubMed  Google Scholar 

  • Picado A, Dash AP, Bhattacharya S et al (2012) Vector control interventions for visceral leishmaniasis elimination initiative in South Asia, 2005-2010. Indian J Med Res 136:22–31

    PubMed Central  PubMed  Google Scholar 

  • Pimenta PF, Saraiva EM, Rowton E et al (1994) Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A 91:9155–9159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rajendran P, Modi GB (1982) Bacterial flora of sandfly gut (Diptera: Psychodidae). Indian J Public Health 26:49–52

    PubMed  CAS  Google Scholar 

  • Sacks DL, Modi G, Rowton E et al (2000) The role of phosphoglycans in Leishmania-sand fly interactions. Proc Natl Acad Sci U S A 97:406–411

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Simmaco M, Mignogna G, Canofeni S et al (1996) Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem 242:788–792

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Das RK, Sharma SK (2001) Resistance of sandflies to DDT in Kala-azar endemic districts of Bihar, India. Bull World Health Organ 79:793

    PubMed Central  PubMed  CAS  Google Scholar 

  • Singh RK, Mittal PK, Dhiman RC (2012) Insecticide susceptibility status of Phlebotomus argentipes, a vector of visceral leishmaniasis in different foci in three states of India. J Vector Borne Dis 49:254–257

    PubMed  CAS  Google Scholar 

  • Soares RP, Barron T, Mccoy-Simandle K et al (2004) Leishmania tropica: intraspecific polymorphisms in lipophosphoglycan correlate with transmission by different Phlebotomus species. Exp Parasitol 107:105–114

    Article  PubMed  CAS  Google Scholar 

  • Sundar S, Jha TK, Thakur CP et al (2006) Oral miltefosine for the treatment of Indian visceral leishmaniasis. Trans R Soc Trop Med Hyg 100(suppl 1):S26–S33

    Article  PubMed  CAS  Google Scholar 

  • Sundar S, Agrawal N, Arora R et al (2009) Short-course paromomycin treatment of visceral leishmaniasis in India: 14-day vs 21-day treatment. Clin Infect Dis 49:914–918

    Article  PubMed  CAS  Google Scholar 

  • Sundar S, Chakravarty J, Agarwal D et al (2010) Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med 362:504–512

    Article  PubMed  CAS  Google Scholar 

  • Sundar S, Sinha PK, Rai M et al (2011) Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet 377:477–486

    Article  PubMed  CAS  Google Scholar 

  • Tabbabi A, Ghrab J, Aoun K et al (2011) Habitats of the sandfly vectors of Leishmania tropica and L. major in a mixed focus of cutaneous leishmaniasis in southeast Tunisia. Acta Trop 119:131–137

    Article  PubMed  Google Scholar 

  • Thakur CP, Kumar K (1992) Post kala-azar dermal leishmaniasis: a neglected aspect of kala-azar control programmes. Ann Trop Med Parasitol 86:355–359

    PubMed  CAS  Google Scholar 

  • Vieira VP, Ferreira AL, Biral Dos Santos C et al (2012) Peridomiciliary breeding sites of phlebotomine sand flies (Diptera: Psychodidae) in an endemic area of American cutaneous leishmaniasis in southeastern Brazil. Am J Trop Med Hyg 87:1089–1093

    Article  PubMed Central  PubMed  Google Scholar 

  • Volf P, Kiewegova A, Nemec A (2002) Bacterial colonisation in the gut of Phlebotomus duboseqi (Diptera: Psychodidae): transtadial passage and the role of female diet. Folia Parasitol (Praha) 49:73–77

    Article  Google Scholar 

  • Wasserberg G, Abramsky Z, Kotler BP et al (2003) Anthropogenic disturbances enhance occurrence of cutaneous leishmaniasis in Israel Deserts: patterns and mechanisms. Ecol Appl 13:868–881

    Article  Google Scholar 

  • World Health Organization (2004) Regional strategic framework for elimination of kala-azar from the South-East Asia Region (2005–2015). Regional Office for South-East Asia, New Delhi

    Google Scholar 

  • World Health Organization (2007) Regional Technical Advisory Group on kala-azar elimination. Report of the second meeting, Kathmandu, Nepal, 20 October–2 November 2006 [online]

    Google Scholar 

  • World Health Organization (2012) Leishmaniasis: worldwide epidemiological and drug access update. World Health Organization, Geneva. http://www.who.int/leishmaniasis/resources/Leishmaniasis_worldwide_epidemiological_and_drug_access_update.pdf

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivy Hurwitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hurwitz, I., Forshaw, A., Yacisin, K., Ramalho-Ortigao, M., Satoskar, A., Durvasula, R. (2014). Paratransgenic Control of Leishmaniasis: New Developments. In: Satoskar, A., Durvasula, R. (eds) Pathogenesis of Leishmaniasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9108-8_3

Download citation

Publish with us

Policies and ethics