Skip to main content

Intranasal Drug Delivery to the Brain

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

Abstract

Drug delivery into the central nervous system (CNS) compartment is often restricted by the blood–brain barrier (BBB) and blood–cerebrospinal fluid barriers (BCSFB) that separate the blood from brain interstitial and cerebrospinal fluids, respectively. New strategies to circumvent the BBB are greatly needed to utilize polar pharmaceuticals and large biotherapeutics for CNS disease treatment because the BBB is typically impermeable to such compounds. Intranasal administration is a noninvasive method of drug delivery that potentially allows even large biotherapeutics access to the CNS along extracellular pathways associated with the olfactory and trigeminal nerves. Rapid effects, ease of self-administration, and the potential for frequent, chronic dosing are among the potential advantages of the intranasal route. This chapter provides an overview of the unique anatomic and physiologic attributes of the nasal mucosa and its associated cranial nerves that allow small but significant fractions of certain intranasally applied drugs to transfer across the nasal epithelia and subsequently be transported directly into the CNS. We also review the preclinical and clinical literature related to intranasal targeting of biotherapeutics to the CNS and speculate on future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altner H, Altner-Kolnberger I (1974) Freeze-fracture and tracer experiments on the permeability of the zonulae occludentes in the olfactory mucosa of vertebrates. Cell Tissue Res 154(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Anton F, Peppel P (1991) Central projections of trigeminal primary afferents innervating the nasal mucosa: a horseradish peroxidase study in the rat. Neuroscience 41(2–3):617–628

    Article  CAS  PubMed  Google Scholar 

  • Baier PC, Hallschmid M, Seeck-Hirschner M, Weinhold SL, Burkert S, Diessner N, Goder R, Aldenhoff JB, Hinze-Selch D (2011) Effects of intranasal hypocretin-1 (orexin A) on sleep in narcolepsy with cataplexy. Sleep Med 12(10):941–946

    Article  CAS  PubMed  Google Scholar 

  • Baier PC, Weinhold SL, Huth V, Gottwald B, Ferstl R, Hinze-Selch D (2008) Olfactory dysfunction in patients with narcolepsy with cataplexy is restored by intranasal Orexin A (Hypocretin-1). Brain 131(Pt 10):2734–2741

    Article  PubMed  Google Scholar 

  • Baker H, Genter MB (2003) The olfactory system and the nasal mucosa as portals of entry of viruses, drugs, and other exogenous agents into the brain. In: Doty RL (ed) Handbook of olfaction and gustation, 2nd edn. Marcel Dekker, Inc., New York, pp 549–573

    Google Scholar 

  • Baker H, Spencer RF (1986) Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res 63(3):461–473

    Article  CAS  PubMed  Google Scholar 

  • Banks WA (2004) Are the extracellular pathways a conduit for the delivery of therapeutics to the brain? Curr Pharm Des 10(12):1365–1370

    Article  CAS  PubMed  Google Scholar 

  • Banks WA (2009) Characteristics of compounds that cross the blood-brain barrier. BMC Neurol 9(Suppl 1):S3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bilston LE, Fletcher DF, Brodbelt AR, Stoodley MA (2003) Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput Methods Biomech Biomed Engin 6(4):235–241

    Article  PubMed  Google Scholar 

  • Bojsen-Moller F (1975) Demonstration of terminalis, olfactory, trigeminal and perivascular nerves in the rat nasal septum. J Comp Neurol 159(2):245–256

    Article  CAS  PubMed  Google Scholar 

  • Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5(6):514–516

    Article  CAS  PubMed  Google Scholar 

  • Bradbury MWB, Cserr HF (1985) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston MG (ed) Experimental biology of the lymphatic circulation, vol 9. Elsevier, Amsterdam and New York, pp 355–391

    Google Scholar 

  • Broadwell RD, Balin BJ (1985) Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol 242(4):632–650

    Article  CAS  PubMed  Google Scholar 

  • Broberg EK, Peltoniemi J, Nygardas M, Vahlberg T, Roytta M, Hukkanen V (2004) Spread and replication of and immune response to gamma134.5-negative herpes simplex virus type 1 vectors in BALB/c mice. J Virol 78(23):13139–13152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62

    CAS  PubMed  Google Scholar 

  • Buchner K, Seitz-Tutter D, Shonitzer K, Weiss DG (1987) A quantitative study of anterograde and retrograde axonal transport of exogenous proteins in olfactory nerve C-fibers. Neuroscience 22:697–707

    Article  CAS  PubMed  Google Scholar 

  • Caggiano M, Kauer JS, Hunter DD (1994) Globose basal cells are neuronal progenitors in the olfactory epithelium: a lineage analysis using a replication-incompetent retrovirus. Neuron 13(2):339–352

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST, Clugnet MC, Price JL (1994) Central olfactory connections in the macaque monkey. J Comp Neurol 346(3):403–434

    Article  CAS  PubMed  Google Scholar 

  • Cattepoel S, Hanenberg M, Kulic L, Nitsch RM (2011) Chronic intranasal treatment with an anti-abeta(30-42) scFv antibody ameliorates amyloid pathology in a transgenic mouse model of Alzheimer’s disease. PLoS One 6(4):e18296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cauna N, Hinderer KH (1969) Fine structure of blood vessels of the human nasal respiratory mucosa. Ann Otol Rhinol Laryngol 78(4):865–879

    CAS  PubMed  Google Scholar 

  • Charlton ST, Whetstone J, Fayinka ST, Read KD, Illum L, Davis SS (2008) Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model. Pharm Res 25(7):1531–1543

    Article  CAS  PubMed  Google Scholar 

  • Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC (2007) Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337(1–2):1–24

    Article  CAS  PubMed  Google Scholar 

  • Coyle P (1975) Arterial patterns of the rat rhinencephalon and related structures. Exp Neurol 49:671–690

    Article  CAS  PubMed  Google Scholar 

  • Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

    Article  PubMed Central  PubMed  Google Scholar 

  • Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Danielyan L, Klein R, Hanson LR, Buadze M, Schwab M, Gleiter CH, Frey WH (2010) Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res 13(2–3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Danielyan L, Schafer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S, Buadze M, Lourhmati A, Klopfer T, Schaumann F, Schmid B, Koehle C, Proksch B, Weissert R, Reichardt HM, van den Brandt J, Buniatian GH, Schwab M, Gleiter CH, Frey WH II (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14(1):3–16. doi:10.1089/rej.2010.1130

    Article  CAS  PubMed  Google Scholar 

  • Danielyan L, Schafer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, Burkhardt U, Proksch B, Verleysdonk S, Ayturan M, Buniatian GH, Gleiter CH, Frey WH II (2009) Intranasal delivery of cells to the brain. Eur J Cell Biol 88(6):315–324

    Article  CAS  PubMed  Google Scholar 

  • Davis SS, Illum L (2003) Absorption enhancers for nasal drug delivery. Clin Pharmacokinet 42(13):1107–1128

    Article  CAS  PubMed  Google Scholar 

  • Deadwyler SA, Porrino L, Siegel JM, Hampson RE (2007) Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 27(52):14239–14247

    Article  CAS  PubMed  Google Scholar 

  • Deatly AM, Haase AT, Fewster PH, Lewis E, Ball MJ (1990) Human herpes virus infections and Alzheimer’s disease. Neuropathol Appl Neurobiol 16(3):213–223

    Article  CAS  PubMed  Google Scholar 

  • Deli MA (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 1788:892–910

    Article  CAS  PubMed  Google Scholar 

  • Dhuria SV, Hanson LR, Frey WH II (2009) Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system. J Pharm Sci 98(7):2501–2515

    Article  CAS  PubMed  Google Scholar 

  • Dhuria SV, Hanson LR, Frey WH II (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99(4):1654–1673

    CAS  PubMed  Google Scholar 

  • Donega V, van Velthoven CT, Nijboer CH, van Bel F, Kas MJ, Kavelaars A, Heijnen CJ (2013) Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS One 8(1):e51253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doty RL (2008) The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol 63(1):7–15

    Article  PubMed  Google Scholar 

  • Draghia R, Caillaud C, Manicom R, Pavirani A, Kahn A, Poenaru L (1995) Gene delivery into the central nervous system by nasal instillation in rats. Gene Ther 2(6):418–423

    CAS  PubMed  Google Scholar 

  • Elsaesser R, Paysan J (2007) The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells. BMC Neurosci 8(Suppl 3):S1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ermisch A, Barth T, Ruhle HJ, Skopkova J, Hrbas P, Landgraf R (1985) On the blood-brain barrier to peptides: accumulation of labelled vasopressin, DesGlyNH2-vasopressin and oxytocin by brain regions. Endocrinol Exp 19(1):29–37

    CAS  PubMed  Google Scholar 

  • Faber WM (1937) The nasal mucosa and the subarachnoid space. Am J Anat 62(1):121–148

    Article  Google Scholar 

  • Favre JJ, Chaffanjon P, Passagia JG, Chirossel JP (1995) Blood supply of the olfactory nerve: meningeal relationships and surgical relevance. Surg Radiol Anat 17:133–138

    Article  CAS  PubMed  Google Scholar 

  • Febbraro F, Andersen KJ, Sanchez-Guajardo V, Tentillier N, Romero-Ramos M (2013) Chronic intranasal deferoxamine ameliorates motor defects and pathology in the alpha-synuclein rAAV Parkinson’s model. Exp Neurol 247C:45–58

    Article  CAS  Google Scholar 

  • Field P, Li Y, Raisman G (2003) Ensheathment of the olfactory nerves in the adult rat. J Neurocytol 32(3):317–324

    Article  PubMed  Google Scholar 

  • Finger TE, St Jeor VL, Kinnamon JC, Silver WL (1990) Ultrastructure of substance P- and CGRP-immunoreactive nerve fibers in the nasal epithelium of rodents. J Comp Neurol 294(2):293–305

    Article  CAS  PubMed  Google Scholar 

  • Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH II, Toth C (2008) Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131(Pt 12):3311–3334

    Article  PubMed  Google Scholar 

  • Fransson M, Piras E, Burman J, Nilsson B, Essand M, Lu B, Harris RA, Magnusson PU, Brittebo E, Loskog AS (2012) CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation 9:112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frenkel D, Solomon B (2002) Filamentous phage as vector-mediated antibody delivery to the brain. Proc Natl Acad Sci U S A 99(8):5675–5679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frey WH II, Liu L, Chen XQ, Thorne RG, Fawcett JR, Ala TA, Rahman YE (1997) Delivery of 125I-NGF to the brain via the olfactory route. Drug Deliv 4:87–92

    Article  CAS  Google Scholar 

  • Gozes I, Giladi E, Pinhasov A, Bardea A, Brenneman DE (2000) Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J Pharmacol Exp Ther 293(3):1091–1098

    CAS  PubMed  Google Scholar 

  • Graff CL, Pollack GM (2005) Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci 94:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Standring S, Borley NR, Collins P, Crossman AR, Gatzoulis MA, Healy JC, Johnson D, Mahadevan V, Newell RLM, Wigley CB (2008) Gray’s anatomy, 40 edn. Elsevier, Philadelphia

    Google Scholar 

  • Greene EC (1935) Anatomy of the rat. Braintree Scientific, inc., Braintree, MA

    Google Scholar 

  • Guo C, Wang T, Zheng W, Shan ZY, Teng WP, Wang ZY (2013) Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34(2):562–5759

    Article  CAS  PubMed  Google Scholar 

  • Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, Park JW, Bankiewicz K (2006) The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14(1):69–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han IK, Kim MY, Byun HM, Hwang TS, Kim JM, Hwang KW, Park TG, Jung WW, Chun T, Jeong GJ, Oh YK (2007) Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy. J Mol Med 85(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, Marti DL, Hoekman JD, Matthews RB, Frey WH II, Panter SS (2009) Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther 330(3):679–686

    Article  CAS  PubMed  Google Scholar 

  • Harkema JR, Carey SA, Wagner JG (2006) The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 34(3):252–269

    Article  CAS  PubMed  Google Scholar 

  • Hegg CC, Irwin M, Lucero MT (2009) Calcium store-mediated signaling in sustentacular cells of the mouse olfactory epithelium. Glia 57(6):634–644

    Article  PubMed Central  PubMed  Google Scholar 

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90(12):1927–1936

    Article  CAS  PubMed  Google Scholar 

  • Hoekman JD, Ho RJ (2011) Enhanced analgesic responses after preferential delivery of morphine and fentanyl to the olfactory epithelium in rats. Anesth Analg 113(3):641–651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hosoya K, Kubo H, Natsume H, Sugibayashi K, Morimoto Y, Yamashita S (1993) The structural barrier of absorptive mucosae: site difference of the permeability of fluorescein isothiocyanate-labelled dextran in rabbits. Biopharm Drug Dispos 14(8):685–695

    Article  CAS  PubMed  Google Scholar 

  • Ichimura T, Fraser PA, Cserr HF (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain research 545(1–2):103–113

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Illum L (2004) Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 56(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Illum L (2012) Nasal drug delivery—recent developments and future prospects. J Control Release 161(2):254–263

    Article  CAS  PubMed  Google Scholar 

  • Iwai N, Zhou Z, Roop DR, Behringer RR (2008) Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells 26(5):1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Jafek BW (1983) Ultrastructure of human nasal mucosa. Laryngoscope 93(12):1576–1599

    Article  CAS  PubMed  Google Scholar 

  • Jansson B, Bjork E (2002) Visualization of in vivo olfactory uptake and transfer using fluorescein dextran. J Drug Target 10(5):379–386

    Article  CAS  PubMed  Google Scholar 

  • Jauch-Chara K, Friedrich A, Rezmer M, Melchert UH, Scholand-Engler HG, Hallschmid M, Oltmanns KM (2012) Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans. Diabetes 61(9):2261–2268

    Google Scholar 

  • Jin Y, Dons L, Kristensson K, Rottenberg ME (2001) Neural route of cerebral Listeria monocytogenes murine infection: role of immune response mechanisms in controlling bacterial neuroinvasion. Infect Immun 69(2):1093–1100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson NJ, Hanson LR, Frey WH (2010) Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm 7(3):884–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1(1):2

    Article  PubMed Central  PubMed  Google Scholar 

  • Kandimalla KK, Donovan MD (2005) Localization and differential activity of p-glycoprotein in the bovine and nasal respiratory mucosae. Pharm Res 22:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Kang YS, Park JH (2000) Brain uptake and the analgesic effect of oxytocin—its usefulness as an analgesic agent. Arch Pharm Res 23(4):391–395

    Article  CAS  PubMed  Google Scholar 

  • Kerjaschki D, Horander H (1976) The development of mouse olfactory vesicles and their cell contacts: a freeze-etching study. J Ultrastruct Res 54(3):420–444

    Article  CAS  PubMed  Google Scholar 

  • Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19(6):480–488

    Article  CAS  PubMed  Google Scholar 

  • Kim ID, Kim SW, Lee JK (2009) Gene knockdown in the olfactory bulb, amygdala, and hypothalamus by intranasal siRNA administration. Korean J Anat 42(4):285–292

    Google Scholar 

  • Kiyono H, Fukuyama S (2004) NALT-versus Peyer’s patch-mediated mucosal immunity. Nat Rev Immunol 4:699–710

    Article  CAS  PubMed  Google Scholar 

  • Kristensson K (2011) Microbes’ roadmap to neurons. Nat Rev Neurosci 12(6):345–357

    Article  CAS  PubMed  Google Scholar 

  • Kristensson K, Olsson Y (1971) Uptake of exogenous proteins in mouse olfactory cells. Acta Neuropathol 19(2):145–154

    Article  CAS  PubMed  Google Scholar 

  • Laing JM, Aurelian L (2008) DeltaRR vaccination protects from KA-induced seizures and neuronal loss through ICP10PK-mediated modulation of the neuronal-microglial axis. Genet Vaccines Ther 6:1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lansley AB, Martin GP (2001) Nasal drug delivery. In: Hillery AM, Lloyd AW, Swarbrick J (eds) Drug delivery and targeting. CRC Press, Boca Raton, pp 237–268

    Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, Park DK, Lim JY, Kim JM, Jeon D, Ryu H, Lee SK, Kim M, Roh JK (2012) miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 72(2):269–277

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Field PM, Raisman G (2005) Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia 52(3):245–251

    Article  PubMed  Google Scholar 

  • Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64(7):614–628

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y, Gray AJ, Hirata-Fukae C, Minami SS, Waterhouse EG, Mattson MP, LaFerla FM, Gozes I, Aisen PS (2007) Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. J Mol Neurosci 31(2):165–170

    CAS  PubMed  Google Scholar 

  • Merkus P, Guchelaar HJ, Bosch DA, Merkus FW (2003) Direct access of drugs to the human brain after intranasal drug administration? Neurology 60(10):1669–1671

    Article  CAS  PubMed  Google Scholar 

  • Mery S, Gross EA, Joyner DR, Godo M, Morgan KT (1994) Nasal diagrams: a tool for recording the distribution of nasal lesions in rats and mice. Toxicol Pathol 22:353–372

    Article  CAS  PubMed  Google Scholar 

  • Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 31(6):246–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller (2013) The promise and perils of oxytocin. Science 339:267–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenberg GA, Smith Q, Drewes LR (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7(1):84–96

    Article  CAS  PubMed  Google Scholar 

  • Powell KJ, Hori SE, Leslie R, Andrieux A, Schellinck H, Thorne M, Robertson GS (2007) Cognitive impairments in the STOP null mouse model of schizophrenia. Behav Neurosci 121(5):826–835

    Article  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34(1):207–217

    Article  CAS  PubMed  Google Scholar 

  • Reitz M, Demestre M, Sedlacik J, Meissner H, Fiehler J, Kim SU, Westphal M, Schmidt NO (2012) Intranasal delivery of neural stem/progenitor cells: a noninvasive passage to target intracerebral glioma. Stem Cells Transl Med 1(12):866–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326(1):47–63

    Article  CAS  PubMed  Google Scholar 

  • Renner DB, Frey WH II, Hanson LR (2012a) Intranasal delivery of siRNA to the olfactory bulbs of mice via the olfactory nerve pathway. Neurosci Lett 513(2):193–197

    Article  CAS  PubMed  Google Scholar 

  • Renner DB, Svitak AL, Gallus NJ, Ericson ME, Frey WH II, Hanson LR (2012b) Intranasal delivery of insulin via the olfactory nerve pathway. J Pharm Pharmacol 64(12):1709–1714

    Article  CAS  PubMed  Google Scholar 

  • Rojanasakul Y, Wang LY, Bhat M, Glover DD, Malanga CJ, Ma JK (1992) The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res 9(8):1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Ronaldson PT, Babakhanian K, Bendayan R (2007) Drug transport in the brain. In: You G, Morris ME (eds) Drug transporters: molecular characterization and role in drug disposition. Wiley-Interscience, Hoboken, pp 411–461

    Chapter  Google Scholar 

  • Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH II (2004) Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 151(1–2):66–77

    Article  CAS  PubMed  Google Scholar 

  • Sakane T, Akizuki M, Taki Y, Yamashita S, Sezaki H, Nadai T (1995) Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol 47(5):379–381

    Article  CAS  PubMed  Google Scholar 

  • Schaefer ML, Bottger B, Silver WL, Finger TE (2002) Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol 444(3):221–226

    Article  PubMed  Google Scholar 

  • Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO (2006) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol 238(4):962–974

    Article  CAS  PubMed  Google Scholar 

  • Schuenke M, Schulte E, Schumacher U (2010) Head and neuroanatomy. Atlas of anatomy. Thieme, Stuttgart

    Google Scholar 

  • Scremin OU (2004) Cerebral vascular system. In: Paxinos G (ed) The rat nervous system. Elsevier, Inc., San Diego, pp 1167–1202

    Google Scholar 

  • Sezaki H (1995) Mucosal penetration enhancement. J Drug Target 3(3):175–177

    Article  CAS  PubMed  Google Scholar 

  • Shiryaev N, Jouroukhin Y, Giladi E, Polyzoidou E, Grigoriadis NC, Rosenmann H, Gozes I (2009) NAP protects memory, increases soluble tau and reduces tau hyperphosphorylation in a tauopathy model. Neurobiol Dis 34(2):381–388

    Article  CAS  PubMed  Google Scholar 

  • Steinke A, Meier-Stiegen S, Drenckhahn D, Asan E (2008) Molecular composition of tight and adherens junctions in the rat olfactory epithelium and fila. Histochem Cell Biol 130(2):339–361

    Article  CAS  PubMed  Google Scholar 

  • Stevens J, Ploeger BA, van der Graaf PH, Danhof M, de Lange EC (2011) Systemic and direct nose-to-brain transport pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab Dispos 39(12):2275–2282

    Article  CAS  PubMed  Google Scholar 

  • Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76(1):142–159

    Article  CAS  PubMed  Google Scholar 

  • Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246(6 Pt 2):F835–F844

    CAS  PubMed  Google Scholar 

  • Thiebaud N, Menetrier F, Belloir C, Minn A-L, Neiers F, Artur Y, Le Bon A-M, Heydel J-M (2011) Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium. Neurosci Lett 505:180–185

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Emory CR, Ala TA, Frey WH II (1995) Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain research 692(1–2):278–282

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Frey WH II (2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 40(12):907–946

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Hanson LR, Ross TM, Tung D, Frey WH II (2008) Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience 152(3):785–797

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Hrabetova S, Nicholson C (2004a) Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 92(6):3471–3481

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Pronk GJ, Padmanabhan V, Frey WH II (2004b) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127(2):481–496

    Article  CAS  PubMed  Google Scholar 

  • Tucker D (1971) Nonolfactory responses from the nasal cavity: Jacobson’s organ and the trigeminal system. In: Biedler LM (ed) Handbook of sensory physiology, vol 4. Springer, New York, pp 151–181

    Google Scholar 

  • van Velthoven CT, Sheldon RA, Kavelaars A, Derugin N, Vexler ZS, Willemen HL, Maas M, Heijnen CJ, Ferriero DM (2013) Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 44(5):1426–1432

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Olbricht WL (2011) Fluid mechanics in the perivascular space. J Theor Biol 274(1):52–57

    Article  PubMed  Google Scholar 

  • Wei N, Yu SP, Gu X, Taylor TM, Song D, Liu XF, Wei L (2013) Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant 22(6):977–991

    Article  PubMed  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Sam H, Horvat S, Deli MA, Mack AF (2008) Epithelial and endothelial barriers in the olfactory region of the nasal cavity of the rat. Histochem Cell Biol 130(1):127–140

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Davis FJ, Chauhan BC, Viola KL, Lacor PN, Velasco PT, Klein WL, Chauhan NB (2013) Brain transit and ameliorative effects of intranasally delivered anti-amyloid-beta oligomer antibody in 5XFAD mice. J Alzheimers Dis 35(4):777–788

    PubMed Central  PubMed  Google Scholar 

  • Yang JP, Liu HJ, Cheng SM, Wang ZL, Cheng X, Yu HX, Liu XF (2009) Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett 449(2):108–111

    Article  CAS  PubMed  Google Scholar 

  • Yoffey JM, Drinker CK (1938) The lymphatic pathway from the nose and pharynx: the absorption of dyes. J Exp Med 68(4):629–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Portions of this work were supported by the University of Wisconsin-Madison School of Pharmacy, the Graduate School at the University of Wisconsin, the Michael J. Fox Foundation for Parkinson’s Research, the Wisconsin Alzheimer’s Disease Research Center (NIH P50-AG033514), and the Clinical and Translational Science Award (CTSA) program, through the NIH National Center for Advancing Translational Sciences (NCATS; grant UL1TR000427). All content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Robert Thorne acknowledges periodically receiving honoraria for speaking to organizations within academia, foundations, and the biotechnology and pharmaceutical industry as well as occasional service as a consultant on CNS drug delivery to industry. Jeffrey Lochhead and Robert Thorne also acknowledge being inventors on patents and/or patent applications related to intranasal drug delivery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Thorne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Lochhead, J.J., Thorne, R.G. (2014). Intranasal Drug Delivery to the Brain. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_14

Download citation

Publish with us

Policies and ethics