Skip to main content

Matrix Metalloproteinase and Its Inhibitors in Cancer Progression

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

Abstract

Matrix metalloproteases (MMPs) are a family of zinc-dependent endopeptidases that participates in the degradation of various components of the extracellular matrix (ECM) and basement membrane. The main functions of MMPs are in wound healing, embryogenesis, angiogenesis, invasions, and tumor cell metastasis. MMPs are involved in solid and hematological malignancy through modification of cell growth, activation of cancer cells, and modulation of immune functions. Several polymorphisms of different MMPs and their expression levels have been well documented in different types of solid cancer. These polymorphic variations were found to be associated with angiogenesis, cancer progression, invasion, and metastasis. There is paucity of data available in the field of hematological malignancies. Hence, the field of matrix biology of hematological malignancies is an area of active exploration. Last 20 years, intensive drug discovery programs are carried out in many clinical trials of matrix metalloproteinase inhibitors (MMPIs) for cancer therapy. Number of MMP inhibitors (MMPIs) have been devolved for the cancer treatment. However, their efficacy and action have not been confirmed, and more data is required for better conclusions. For discovery of drug target motive, the regulatory mechanisms of MMPs and its inhibitors may provide several new avenues for the development of therapeutic intervention for the patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marquez-Curtis LA, Dobrowsky A, Montaño J et al (2001) Matrix metalloproteinase and tissue inhibitors of metalloproteinase secretion by haematopoietic and stromal precursors and their production in normal and leukaemic long-term marrow cultures. Br J Haematol 115(3):595-604.

    Article  PubMed  CAS  Google Scholar 

  2. Egeblad M and Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161-174.

    Article  PubMed  CAS  Google Scholar 

  3. Gross J and Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 48:1014-1022.

    Article  PubMed  CAS  Google Scholar 

  4. Eisen A, Jeffrey J, Gross J (1968) Human skin collagenase. Isolation and mechanism of attack on the collagen molecule. Biochim Biophys Acta 151:637–645.

    Article  PubMed  CAS  Google Scholar 

  5. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry, Circ Res 92:827–839.

    Google Scholar 

  6. Van den Steen PE, Proost P, Grillet B et al (2002) Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J 16: 379–389.

    Article  PubMed  Google Scholar 

  7. Pei D, Majmudar G, Weiss S J (1994) Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem 269:25849–25855.

    PubMed  CAS  Google Scholar 

  8. Ye S, Eriksson P, Hamsten A, Kurkinen M et al (1996) Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem 271:13055-13060.

    Article  PubMed  CAS  Google Scholar 

  9. Sternlicht MD and Werb Z. (2001) How matrix metalloproteinases regulate cell behavior. Annu RevCell Dev Biol 17:463-516.

    Article  CAS  Google Scholar 

  10. Westermarck J, Kähäri VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781-792.

    PubMed  CAS  Google Scholar 

  11. Birkedal-Hansen H, Moore WG, Bodden MK et al (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4: 197-250.

    PubMed  CAS  Google Scholar 

  12. Kerkela E and Saarialho-Kere U (2003) Matrix metalloproteinase in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 12:109-125.

    Article  PubMed  CAS  Google Scholar 

  13. Feng C, Wu Z, Guo T et al (2012) BLCA-4 expression is related to MMP-9, VEGF, IL-1α and IL-8 in bladder cancer but not to PEDF, TNF-α or angiogenesis. Pathol Biol (Paris) 60:e36-40.

    Article  CAS  Google Scholar 

  14. Coutu DL and Galipeau J (2011) Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging (Albany NY) 3:920-933.

    CAS  Google Scholar 

  15. Heussen C and Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochem 102: 196-202.

    Article  CAS  Google Scholar 

  16. Kleiner, D.E. and Stetler-Stevenson (1994) Quantitative zymography: detection of pictogram quantities of gelatinases. Anal Biochem 218: 325-329.

    Google Scholar 

  17. Snoek-van Beurden PA and Von den Hoff JW (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques: 38:73-83.

    Article  CAS  Google Scholar 

  18. Woessner, J.F. Jr. (1995). Quantification of matrix metalloproteinases in tissue samples. Methods Enzymol: 248; 510-528.

    Article  CAS  Google Scholar 

  19. Bayramoglu HV, Gunes M, Metintas I et al (2009) The association of MMP-9 enzyme activity, MMP-9 C1562T polymorphism, and MMP-2 and -9 and TIMP-1, -2, -3, and -4 gene expression in lung cancer. Genet Test Mol Biomarkers: 13; 671-678.

    Article  CAS  Google Scholar 

  20. Li Y, Jia J H, Kang S et al (2009) The functional polymorphisms on promoter region of matrix metalloproteinase-12, -13 genes may alter the risk of epithelial ovarian carcinoma in Chinese. Int J Gynecol Cancer 19:129-133.

    Article  PubMed  Google Scholar 

  21. Xing LL, Wang ZN, Jiang L et al (2007) Matrix metalloproteinase-9-1562C>T polymorphism may increase the risk of lymphatic metastasis of colorectal cancer. World J Gastroenterol 13: 4626-9.

    Article  PubMed  CAS  Google Scholar 

  22. Vairaktaris E , Vassiliou S, Nkenke E et al (2008) A metalloproteinase-9 polymorphism which affects its expression is associated with increased risk for oral squamous cell carcinoma. Eur J Surg Oncol 34: 450-455

    Article  PubMed  CAS  Google Scholar 

  23. Chaudhary AK, Singh M, Bharti AC et al (2010) Synergistic effect of stromelysin-1 (matrix metalloproteinase-3) promoter (-1171 5A->6A) polymorphism in oral submucous fibrosis and head and neck lesions. BMC Cancer 10:369

    Article  PubMed  Google Scholar 

  24. Chaudhary AK, Pandya S, Mehrotra R et al (2010). Functional polymorphism of the MMP-1 promoter (-1607 1G/2G) in potentially malignant and malignant head and neck lesions in an Indian population. Biomarkers 15: 684-692

    Article  PubMed  CAS  Google Scholar 

  25. Matsumura S, Oue N, Nakayama H, et al(2005) A single nucleotide polymorphism in the MMP-9 promoter affects tumor progression and invasive phenotype of gastric cancer. J Cancer Res Clin Oncol 131: 19-25

    Article  PubMed  CAS  Google Scholar 

  26. Chaudhary AK, Pandya S, Mehrotra R et al (2011) Role of functional polymorphism of matrix metalloproteinase-2 (-1306 C/T and -168 G/T) and MMP-9 (-1562 C/T) promoter in oral submucous fibrosis and head and neck squamous cell carcinoma in an Indian population. Biomarkers 16: 577-586

    Article  PubMed  CAS  Google Scholar 

  27. Okamoto K, Mimura K, Murawaki Y et al (2005) Association of functional gene polymorphisms of matrix metalloproteinase (MMP)-1, MMP-3 andMMP-9 with the progression of chronic liver disease. J Gastroenterol Hepatol. 20:1102-1108

    Article  PubMed  CAS  Google Scholar 

  28. Pandya S, Chaudhary AK, Singh M et al (2009) Correlation of histopathological diagnosis with habits and clinical findings in oral submucous fibrosis. Head Neck Oncol. 1: 10

    Article  PubMed  Google Scholar 

  29. Sharan RN, Mehrotra R, Choudhury Y et al (2012) Association of betel nut with carcinogenesis: revisit with a clinical perspective. PLoS One.7 (8):e42759.

    Article  PubMed  CAS  Google Scholar 

  30. Chang YC, Yang SF, Tai KW et al (2002) Increased tissue inhibitor of metalloproteinase-1 expression and inhibition of gelatinase: A activity in buccal mucosal fibroblasts by arecoline as possible mechanisms for oral submucous fibrosis. Oral Oncol. 38:195-200

    Google Scholar 

  31. Yu XF, Han ZC (2006) Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. Histol Histopathol 21: 519-553.

    PubMed  CAS  Google Scholar 

  32. Cheng T, Rodrigues N, Shen H et al (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287: 1804-1808.

    Article  PubMed  CAS  Google Scholar 

  33. Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737-44.

    Article  PubMed  CAS  Google Scholar 

  34. Chaudhary AK, Pandya S, Ghosh K, Nadkarni A (2013) Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: An overview. Mutat Res 753(1):7–23.

    Google Scholar 

  35. Kuittinen O, Savolainen ER, Koistinen P (2001). MMP-2 and MMP-9 expression in adult and childhood acute lymphatic leukemia (ALL). Leuk Res 25: 125-131.

    Article  PubMed  CAS  Google Scholar 

  36. Ries C, Loher F, Zang C (1999) Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes. Clin Cancer Res 5:1115-24.

    PubMed  CAS  Google Scholar 

  37. Travaglino E, Benatti C, Malcovati L et al (2008) Invernizzi, Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes. Eur J Haematol 80: 216-226

    Article  PubMed  Google Scholar 

  38. Overall CM and López-Otín C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer. 2(9):657-672.

    Article  PubMed  CAS  Google Scholar 

  39. Roy R, Yang J, Moses MA (2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol. 27: 5287-97.

    Article  PubMed  CAS  Google Scholar 

  40. Saghatelian A, Jessani N, Joseph A, et al (2004) Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci U S A 101: 10000-10005.

    Article  PubMed  CAS  Google Scholar 

  41. Acharya MR, Venitz J, Figg WD, et al (2004) Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resist Updat 7:195-208.

    Article  PubMed  Google Scholar 

  42. Sapadin AN, Fleischmajer R (2006) Tetracyclines: Nonantibiotic properties and their clinical implications. J Am Acad Dermatol 54:258-265.

    Article  PubMed  Google Scholar 

  43. Moss ML, Bartsch JW (2004) Therapeutic benefits from targeting of ADAM family members. Biochemistry 43:7227-7235.

    Article  PubMed  CAS  Google Scholar 

  44. Liu X, Fridman JS, Wang Q, et al (2006) Selective inhibition of ADAM metalloproteases blocks HER-2 extracellular domain (ECD) cleavage and potentiates the anti-tumor effects of trastuzumab. Cancer Biol Ther 5:648-656.

    Article  PubMed  CAS  Google Scholar 

  45. Fridman JS, Caulder E, Hansbury M, et al (2007) Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin Cancer Res 13:1892-1902.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Indian Council of Medical Research, Ministry of Health and Family Welfare, New Delhi, for providing financial support (Grant No. 3/1/3/PDF-4/HRD-2011/4th batch) to AKC for this study. Authors are also thankful to persistent efforts of an enthusiastic group of NIIH staff for their participation in the present book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaudhary, A.K., Nadkarni, A.H., Pandya, S., Ghosh, K. (2014). Matrix Metalloproteinase and Its Inhibitors in Cancer Progression. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_8

Download citation

Publish with us

Policies and ethics