Skip to main content

Proteases and Cancer Development

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

  • 1378 Accesses

Abstract

Dysfunction of proteases is observed in many cancers. Signaling and functional roles of both intracellular proteases and extracellular proteases in the development of cancer are discussed in this chapter. As mitochondrial proteases, HtrA2/Omi regulates inhibitors of apoptosis proteins, while Lon protease degrades misfolded proteins and maintains the stability of the mitochondrial genome. Caspases are closely interconnected with mitochondria in apoptosis and serve as the major executors of the apoptosis machinery. Cathepsin proteases have multiple substrates including growth factors and extracellular matrix proteins. Matrix metalloproteinases trigger the release of growth and angiogenic factors and modulate extracellular matrix molecules. Changes of these proteases affect various aspects of cancer development, including transformation, apoptosis, invasion, and metastasis of cancer cells. Targeting these proteases is becoming an important approach to cancer treatment.

These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee SH, Lee JW, Kim HS, et al (2003) Immunohistochemical analysis of Omi/HtrA2 expression in stomach cancer. APMIS 111: 586-590.

    Article  PubMed  CAS  Google Scholar 

  2. Yang X, Xing H, Gao Q, et al (2005) Regulation of HtrA2/Omi by X-linked inhibitor of apoptosis protein in chemoresistance in human ovarian cancer cells. Gynecol Oncol 97: 413-421.

    Article  PubMed  CAS  Google Scholar 

  3. Hu XY, Xu YM, Chen XC, et al (2006) Immunohistochemical analysis of Omi/HtrA2 expression in prostate cancer and benign prostatic hyperplasia. APMIS 114: 893-898.

    Article  PubMed  CAS  Google Scholar 

  4. Zhu ZH, Yu YP, Zheng ZL, et al (2010) Integrin alpha 7 interacts with high temperature requirement A2 (HtrA2) to induce prostate cancer cell death. Am J Pathol 177: 1176-1186.

    Article  PubMed  CAS  Google Scholar 

  5. Li S, Wan M, Cao X, et al (2011) Expression of AIF and HtrA2/Omi in small lymphocytic lymphoma and diffuse large B-cell lymphoma. Arch Pathol Lab Med 135: 903-908.

    PubMed  CAS  Google Scholar 

  6. Cilenti L, Kyriazis GA, Soundarapandian MM et al (2005) Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells. Am J Physiol Renal Physiol 288: F371-379.

    Article  PubMed  CAS  Google Scholar 

  7. Hegde R, Srinivasula SM, Zhang Z, et al (2002). Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277: 432-438.

    Article  PubMed  CAS  Google Scholar 

  8. Yang QH, Church-Hajduk R, Ren J, et al (2003) Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17: 1487-1496.

    Article  PubMed  CAS  Google Scholar 

  9. Martins LM, Iaccarino I, Tenev T, et al (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277: 439-444.

    Article  PubMed  CAS  Google Scholar 

  10. Verhagen AM, Silke J, Ekert PG, et al (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277: 445-454.

    Article  PubMed  CAS  Google Scholar 

  11. Kuninaka S, Iida SI, Hara T, et al (2007) Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation. Oncogene 26: 2395-2406.

    Article  PubMed  CAS  Google Scholar 

  12. 12.Hartkamp J, Roberts SG (2010) HtrA2, taming the oncogenic activities of WT1. Cell Cycle 9: 2508-2514.

    Article  PubMed  CAS  Google Scholar 

  13. Hartkamp J, Carpenter B, Roberts SG (2010) The Wilms’ tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 37: 159-171.

    Article  PubMed  CAS  Google Scholar 

  14. Yang L, Sun M, Sun XM, et al (2007) Akt attenuation of the serine protease activity of HtrA2/Omi through phosphorylation of Serine 212. J Biol Chem 282: 10981-10987.

    Article  PubMed  CAS  Google Scholar 

  15. Luciakova K, Sokolikova B, Chloupkova M, et al (1999) Enhanced mitochondrial biogenesis is associated with increased expression of the mitochondrial ATP-dependent Lon protease. FEBS Lett 444: 186-188.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu Y, Wang M, Lin H, et al (2002) Epidermal growth factor up-regulates the transcription of mouse lon homology ATP-dependent protease through extracellular signal-regulated protein kinase- and phosphatidylinositol-3-kinase-dependent pathways. Exp Cell Res 280: 97-106.

    Article  PubMed  CAS  Google Scholar 

  17. Bota DA, Ngo JK, Davies KJ (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 38: 665-677.

    Article  PubMed  CAS  Google Scholar 

  18. Fukuda R, Zhang H, Kim JW, et al (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129: 111-122.

    Article  PubMed  CAS  Google Scholar 

  19. Lee HC, Wei YH (2009) Mitochondrial DNA instability and metabolic shift in human cancers. Int J Mol Sci 10: 674-701.

    Article  PubMed  CAS  Google Scholar 

  20. Todorov IN, Todorov GI (2009) Multifactorial nature of high frequency of mitochondrial DNA mutations in somatic mammalian cells. Biochem 74: 962-970.

    CAS  Google Scholar 

  21. Adam C, Picard M, Dequard-Chablat M, et al (2012) Biological roles of the Podospora anserina mitochondrial Lon protease and the importance of its N-domain. PLoS One 7: e38138.

    Article  PubMed  CAS  Google Scholar 

  22. Watabe S, Hara M, Yamamoto M, et al (2001) Activation of mitochondrial ATP-dependent protease by peptides and proteins. Tohoku J Exp Med 195: 153-161.

    Article  PubMed  CAS  Google Scholar 

  23. Amerik A, Antonov VK, Ostroumova NI, et al (1990) Cloning, structure and expression of the full-size lon gene in Escherichia coli coding for ATP-dependent La-proteinase. Bioorg Khim 16: 869-880.

    PubMed  CAS  Google Scholar 

  24. Rasulova FS, Dergousova NI, Starkova NN et al (1998) The isolated proteolytic domain of Escherichia coli ATP-dependent protease Lon exhibits the peptidase activity. FEBS Lett 432: 179-181.

    Article  PubMed  CAS  Google Scholar 

  25. Wang HM, Cheng KC, Lin CJ, et al (2010) Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci 101: 2612-2620.

    Article  PubMed  CAS  Google Scholar 

  26. Bernstein SH, Venkatesh S, Li M, et al (2012) The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood 119: 3321-3329.

    Article  PubMed  CAS  Google Scholar 

  27. Olsson M, Zhivotovsky B (2011) Caspases and cancer. Cell Death Differ 18: 1441-1449.

    Article  PubMed  CAS  Google Scholar 

  28. Soung YH, Lee JW, Kim HS, et al. (2003) Inactivating mutations of CASPASE-7 gene in human cancers. Oncogene 22: 8048-8052.

    Article  PubMed  Google Scholar 

  29. Soung YH, Lee JW, Kim SY, et al. (2005) Caspase-8 gene is frequently inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocellular carcinomas. Oncogene 24: 141-147.

    Article  PubMed  CAS  Google Scholar 

  30. Yoo NJ, Lee JW, Kim YJ, et al. (2004) Loss of caspase-2, -6 and -7 expression in gastric cancers. APMIS 112: 330-335.

    PubMed  CAS  Google Scholar 

  31. Kischkel FC, Lawrence DA, Tinel A, et al. (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276: 46639-46646.

    Article  PubMed  CAS  Google Scholar 

  32. Ho LH, Taylor R, Dorstyn L, et al (2009). A tumor suppressor function for caspase-2. Proc Natl Acad Sci U S A 106: 5336-5341.

    Article  PubMed  CAS  Google Scholar 

  33. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22: 8543-8567.

    Article  PubMed  CAS  Google Scholar 

  34. Kischkel FC, Hellbardt S, Behrmann I, et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14: 5579-5588.

    PubMed  CAS  Google Scholar 

  35. Roth W, Reed JC (2002) Apoptosis and cancer: when BAX is TRAILing away. Nat Med 8: 216-218.

    Article  PubMed  CAS  Google Scholar 

  36. Teitz T, Wei T, Valentine MB, et al (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6: 529-535.

    Article  PubMed  CAS  Google Scholar 

  37. Li C, Lu J, Liu Z, et al (2010) The six-nucleotide deletion/insertion variant in the CASP8 promoter region is inversely associated with risk of squamous cell carcinoma of the head and neck. Cancer Prev Res (Phila) 3: 246-253.

    Article  CAS  Google Scholar 

  38. Horiuchi T, Himeji D, Tsukamoto H, et al (2000) Dominant expression of a novel splice variant of caspase-8 in human peripheral blood lymphocytes. Biochem Biophys Res Commun 272: 877-881.

    Article  PubMed  CAS  Google Scholar 

  39. Himeji D, Horiuchi T, Tsukamoto H, et al (2002) Characterization of caspase-8L: a novel isoform of caspase-8 that behaves as an inhibitor of the caspase cascade. Blood 99: 4070-4078.

    Article  PubMed  CAS  Google Scholar 

  40. Mohr A, Zwacka RM, Jarmy G, et al (2005) Caspase-8L expression protects CD34+ hematopoietic progenitor cells and leukemic cells from CD95-mediated apoptosis. Oncogene 24: 2421-2429.

    Article  PubMed  CAS  Google Scholar 

  41. Miller MA, Karacay B, Zhu X, et al (2006) Caspase 8L, a novel inhibitory isoform of caspase 8, is associated with undifferentiated neuroblastoma. Apoptosis 11: 15-24.

    Article  PubMed  CAS  Google Scholar 

  42. Mandruzzato S, Brasseur F, Andry G, et al (1997) A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 186: 785-793.

    Article  PubMed  CAS  Google Scholar 

  43. Kim HS, Lee JW, Soung YH, et al (2003) Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 125: 708-715.

    Article  PubMed  CAS  Google Scholar 

  44. Devarajan E, Sahin AA, Chen JS, et al (2002) Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21: 8843-8851.

    Article  PubMed  CAS  Google Scholar 

  45. Nakopoulou L, Alexandrou P, Stefanaki K, et al (2001) Immunohistochemical expression of caspase-3 as an adverse indicator of the clinical outcome in human. Pathobiology 69:266-273

    Article  PubMed  CAS  Google Scholar 

  46. O’Donovan N, Crown J, Stunell H, et al (2003) Caspase 3 in breast cancer. Clin Cancer Res 9: 738-742.

    PubMed  Google Scholar 

  47. Huang Y, Shin NH, Sun Y, et al (2001). Molecular cloning and characterization of a novel caspase-3 variant that attenuates apoptosis induced by proteasome inhibition. Biochem Biophys Res Commun 283: 762-769.

    Article  PubMed  CAS  Google Scholar 

  48. Vegran F, Boidot R, Oudin C, et al (2006) Overexpression of caspase-3s splice variant in locally advanced breast carcinoma is associated with poor response to neoadjuvant chemotherapy. Clin Cancer Res 12: 5794-5800.

    Article  PubMed  CAS  Google Scholar 

  49. Galluzzi L, Kepp O, Kroemer G (2012) Caspase-3 and prostaglandins signal for tumor regrowth in cancer therapy. Oncogene 31: 2805-2808.

    Article  PubMed  CAS  Google Scholar 

  50. Kute TE, Shao ZM, Sugg NK, et al (1992) Cathepsin D as a prognostic indicator for node-negative breast cancer patients using both immunoassays and enzymatic assays. Cancer Res 52: 5198-5203.

    PubMed  CAS  Google Scholar 

  51. Lah TT, Cercek M, Blejec A, et al (2000) Cathepsin B, a prognostic indicator in lymph node-negative breast carcinoma patients: comparison with cathepsin D, cathepsin L, and other clinical indicators. Clin Cancer Res 6: 578-584.

    PubMed  CAS  Google Scholar 

  52. Levicar N, Kos J, Blejec A, et al (2002) Comparison of potential biological markers cathepsin B, cathepsin L, stefin A and stefin B with urokinase and plasminogen activator inhibitor-1 and clinicopathological data of breast carcinoma patients. Cancer Detect Prev 26: 42-49.

    Article  PubMed  CAS  Google Scholar 

  53. Friedrich B, Jung K, Lein M, et al (1999) Cathepsins B, H, L and cysteine protease inhibitors in malignant prostate cell lines, primary cultured prostatic cells and prostatic tissue. Eur J Cancer 35: 138-144.

    Article  PubMed  CAS  Google Scholar 

  54. Kuester D, Lippert H, Roessner A, et al (2008). The cathepsin family and their role in colorectal cancer. Pathol Res Pract 204: 491-500.

    Article  PubMed  Google Scholar 

  55. Mimae T, Tsuta K, Maeshima AM, et al (2012) Cathepsin D as a potential prognostic marker for lung adenocarcinoma. Pathol Res Pract 208: 534-540.

    Article  PubMed  CAS  Google Scholar 

  56. Solomayer EF, Diel IJ, Meyberg GC, et al (1998) Prognostic relevance of cathepsin D detection in micrometastatic cells in the bone marrow of patients with primary breast cancer. Breast Cancer Res Treat 49:145-154.

    Article  PubMed  CAS  Google Scholar 

  57. Foekens JA, Look MP, Bolt-de Vries J, et al (1999) Cathepsin-D in primary breast cancer: prognostic evaluation involving 2810 patients. Br J Cancer 79: 300-307.

    Article  PubMed  CAS  Google Scholar 

  58. Billgren AM, Rutqvist LE, Johansson H, et al (2000) The role of cathepsin D and PAI-1 in primary invasive breast cancer as prognosticators and predictors of treatment benefit with adjuvant tamoxifen. Eur J Cancer 36:1374-1380.

    Article  PubMed  CAS  Google Scholar 

  59. Rodríguez J, Vázquez J, Corte MD, et al (2005) Clinical significance of cathepsin D concentration in tumor cytosol of primary breast cancer. Int J Biol Markers 20:103-111.

    PubMed  Google Scholar 

  60. Briozzo P, Badet J, Capony F, et al (1991) MCF7 mammary cancer cells respond to bFGF and internalize it following its release from extracellular matrix: a permissive role of cathepsin D. Exp Cell Res 194: 252-259.

    Article  PubMed  CAS  Google Scholar 

  61. Liaudet E, Derocq D, Rochefort H, et al (1995) Transfected cathepsin D stimulates high density cancer cell growth by inactivating secreted growth inhibitors. Cell Growth Differ 6:1045-1052.

    PubMed  CAS  Google Scholar 

  62. Nomura T, Katunuma N (2005) Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J Med Invest 52: 1-9.

    Article  PubMed  Google Scholar 

  63. Cavailles V, Augereau P, Rochefort H (1993) Cathepsin D gene is controlled by a mixed promoter, and estrogens stimulate only TATA-dependent transcription in breast cancer cells. Proc Natl Acad Sci U S A 90: 203-207.

    Article  PubMed  CAS  Google Scholar 

  64. Roger P, Montcourrier P, Maudelonde T, et al (1994) Cathepsin D immunostaining in paraffin-embedded breast cancer cells and macrophages: correlation with cytosolic assay. Hum Pathol 25: 863-871.

    Article  PubMed  CAS  Google Scholar 

  65. Homey B, Muller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2: 175-184.

    Article  PubMed  CAS  Google Scholar 

  66. Sallusto F, Schaerli P, Loetscher P, et al (1998). Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28: 2760-2769.

    Article  PubMed  CAS  Google Scholar 

  67. Sozzani S, Allavena P, Vecchi A, et al (2000) Chemokines and dendritic cell traffic. J Clin Immunol 20: 151-160.

    Article  PubMed  CAS  Google Scholar 

  68. Vicari AP, Caux C, Trinchieri G (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12: 33-42.

    Article  PubMed  CAS  Google Scholar 

  69. Ferrandina G, Scambia G, Bardelli F, et al (1997) Relationship between cathepsin-D content and disease-free survival in node-negative breast cancer patients: a meta-analysis. Br J Cancer 76: 661-666.

    Article  PubMed  CAS  Google Scholar 

  70. Matarrese P, Ascione B, Ciarlo L, et al (2010) Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study. Mol Cancer 9: 207.

    Article  PubMed  Google Scholar 

  71. Nouh MA, Mohamed MM, El-Shinawi M, et al (2011) Cathepsin B: a potential prognostic marker for inflammatory breast cancer. J Transl Med 9: 1.

    Article  PubMed  CAS  Google Scholar 

  72. Mai J, Waisman DM, Sloane BF (2000) Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. Biochim Biophys Acta 1477: 215-230.

    Article  PubMed  CAS  Google Scholar 

  73. Podgorski I, Sloane BF (2003) Cathepsin B and its role(s) in cancer progression. Biochem Soc Symp: 263-276.

    Google Scholar 

  74. Withana NP, Blum G, Sameni M, et al (2012) Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res 72: 1199-1209.

    Article  PubMed  CAS  Google Scholar 

  75. Katunuma N, Murata E, Kakegawa H, et al (1999) Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Lett 458: 6-10.

    Article  PubMed  CAS  Google Scholar 

  76. Maekawa Y, Himeno K, Ishikawa H, et al (1998) Switch of CD4+ T cell differentiation from Th2 to Th1 by treatment with cathepsin B inhibitor in experimental leishmaniasis. J Immunol 161: 2120-2127.

    PubMed  CAS  Google Scholar 

  77. Onishi K, Li Y. Ishii K, et al (2004) Cathepsin L is crucial for a Th1-type immune response during Leishmania major infection. Microbes Infect 6: 468-474.

    Google Scholar 

  78. Saegusa K, Ishimaru N, Yanagi K, et al (2002) Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J Clin Invest 110: 361-369.

    PubMed  CAS  Google Scholar 

  79. Rhee JS, Coussens LM (2002) RECKing MMP function: implications for cancer development. Trends Cell Biol 12: 209-211.

    Article  PubMed  CAS  Google Scholar 

  80. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161-174.

    Article  PubMed  CAS  Google Scholar 

  81. Frank BT, Rossall JC, Caughey GH, et al (2001) Mast cell tissue inhibitor of metalloproteinase-1 is cleaved and inactivated extracellularly by alpha-chymase. J Immunol 166: 2783-2792.

    PubMed  CAS  Google Scholar 

  82. Bergers G, Brekken R, McMahon G, et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737-744.

    Article  PubMed  CAS  Google Scholar 

  83. Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114: 623-633.

    PubMed  CAS  Google Scholar 

  84. Huang S, Van Arsdall M, Tedjarati S, et al (2002) Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst 94: 1134-1142.

    Article  PubMed  CAS  Google Scholar 

  85. Jodele S, Chantrain CF, Blavier L, et al (2005) The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res 65: 3200-3208.

    PubMed  CAS  Google Scholar 

  86. Bergers G, Coussens LM (2000). Extrinsic regulators of epithelial tumor progression: metalloproteinases. Curr Opin Genet Dev 10: 120-127.

    Article  PubMed  CAS  Google Scholar 

  87. Chantrain CF, Henrie, P, Jodele S et al (2006) Mechanisms of pericyte recruitment in tumour angiogenesis: a new role for metalloproteinases. Eur J Cancer 42: 310-318.

    Article  PubMed  CAS  Google Scholar 

  88. Acuff HB, Carter KJ, Fingleton B, et al (2006) Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res 66: 259-266.

    Article  PubMed  CAS  Google Scholar 

  89. Hiratsuka S, Nakamura K, Iwai S, et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2: 289-300.

    Article  PubMed  CAS  Google Scholar 

  90. D’Armiento J, DiColandrea T, Dalal SS, et al (1995). Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol Cell Biol 15, 5732-5739.

    PubMed  Google Scholar 

  91. Sternlicht MD, Lochter A, Sympson CJ, et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98: 137-146.

    Article  PubMed  CAS  Google Scholar 

  92. Masson R, Lefebvre O, Noel A, et al (1998) In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 140: 1535-1541.

    Article  PubMed  CAS  Google Scholar 

  93. Giannelli G, Falk-Marzillier J, Schiraldi O, et al (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277: 225-228.

    Article  PubMed  CAS  Google Scholar 

  94. Koshikawa N, Giannelli G, Cirulli V, et al (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148: 615-624.

    Article  PubMed  CAS  Google Scholar 

  95. Lochter A, Galosy S, Muschler J, et al (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139: 1861-1872.

    Article  PubMed  CAS  Google Scholar 

  96. Balbin M, Fueyo A, Tester AM, et al (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35: 252-257.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shudong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhu, S., Li, Z. (2014). Proteases and Cancer Development. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_7

Download citation

Publish with us

Policies and ethics