Skip to main content

Calpain Interactions with the Protein Phosphatase Calcineurin in Neurodegeneration

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

Abstract

Dysregulation of intracellular Ca2+ is a major cause of neurologic dysfunction and likely plays an important role in the pathophysiology of numerous acute and chronic neurodegenerative conditions. The Ca2+-dependent protease, calpain, and the Ca2+/calmodulin (Ca2+/CaM)-dependent protein phosphatase, calcineurin, are primary effectors of multiple deleterious functions arising from altered Ca2+ handling. Increasing evidence suggests that the calpain-dependent, irreversible conversion of calcineurin to a constitutively active phosphatase occurs in intact cellular systems as a result of injury and disease. In this chapter, a brief overview of calpain and calcineurin functions in nervous tissue is given, followed by a more in-depth discussion of calpain/calcineurin interactions in vitro and in vivo. Particular emphasis is placed on recent studies that have identified calpain proteolysis of calcineurin as a key step in neurodegeneration associated with acute neurologic insults as well as chronic terminal diseases, like Alzheimer’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson GE, C Peterson (1987) Calcium and the aging nervous system. Neurobiol Aging 8:329-343.

    PubMed  CAS  Google Scholar 

  2. Khachaturian ZS (1987) Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol Aging 8:345-346.

    PubMed  CAS  Google Scholar 

  3. Landfield PW, TA Pitler (1984) Prolonged Ca2+-dependent after hyperpolarizations in hippocampal neurons of aged rats. Science 226:1089-1092.

    PubMed  CAS  Google Scholar 

  4. Landfield PW, TA Pitler, MD Applegate (1986) The effects of high Mg2+-to-Ca2+ ratios on frequency potentiation in hippocampal slices of young and aged rats. J Neurophysiol 56:797-811.

    PubMed  CAS  Google Scholar 

  5. Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293-297.

    PubMed  CAS  Google Scholar 

  6. Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369-379.

    PubMed  CAS  Google Scholar 

  7. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623-634.

    PubMed  CAS  Google Scholar 

  8. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465-469.

    PubMed  CAS  Google Scholar 

  9. Choi DW (1994) Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747:162-171.

    PubMed  CAS  Google Scholar 

  10. Gibson G, P Perrino, GA Dienel (1986) In vivo brain calcium homeostasis during aging. Mech Ageing Dev 37:1-12.

    PubMed  CAS  Google Scholar 

  11. Khachaturian ZS (1989) The role of calcium regulation in brain aging: reexamination of a hypothesis. Aging (Milano) 1:17-34.

    CAS  Google Scholar 

  12. Landfield PW (1987) ‘Increased calcium-current’ hypothesis of brain aging. Neurobiol Aging 8:346-347.

    PubMed  CAS  Google Scholar 

  13. Landfield PW, LW Campbell, SY Hao, et al (1989) Aging-related increases in voltage-sensitive, inactivating calcium currents in rat hippocampus. Implications for mechanisms of brain aging and Alzheimer’s disease. Ann N Y Acad Sci 568:95-105.

    PubMed  CAS  Google Scholar 

  14. Abdul HM, JL Furman, MA Sama, et al (2010) NFATs and Alzheimer’s Disease. Mol Cell Pharmacol 2:7-14.

    PubMed  CAS  Google Scholar 

  15. Berridge MJ (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40:297-309.

    PubMed  CAS  Google Scholar 

  16. Bezprozvanny I, MP Mattson (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454-463.

    PubMed  CAS  Google Scholar 

  17. Crish SD, DJ Calkins (2011) Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience 176:1-11.

    PubMed  CAS  Google Scholar 

  18. Gasperini RJ, DH Small (2012) Neurodegeneration in familial amyloidotic polyneuropathy. Clin Exp Pharmacol Physiol 39:680-683.

    PubMed  CAS  Google Scholar 

  19. Goodison WV, V Frisardi, PG Kehoe (2012) Calcium channel blockers and Alzheimer’s disease: potential relevance in treatment strategies of metabolic syndrome. J Alzheimers Dis 30 Suppl 2:S269-282.

    PubMed  Google Scholar 

  20. Green KN, FM LaFerla (2008) Linking calcium to Abeta and Alzheimer’s disease. Neuron 59:190-194.

    PubMed  CAS  Google Scholar 

  21. Stutzmann GE, MP Mattson (2011) Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 63:700-727.

    PubMed  CAS  Google Scholar 

  22. Thibault O, JC Gant, PW Landfield (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 6:307-317.

    PubMed  CAS  Google Scholar 

  23. Toescu EC, A Verkhratsky, PW Landfield (2004) Ca(2+) regulation and gene expression in normal brain aging. Trends Neurosci 27:614-620.

    PubMed  CAS  Google Scholar 

  24. Campbell RL, PL Davies (2012) Structure-function relationships in calpains. Biochem J 447:335-351.

    PubMed  CAS  Google Scholar 

  25. Goll DE, VF Thompson, H Li, et al (2003) The calpain system. Physiol Rev 83:731-801.

    PubMed  CAS  Google Scholar 

  26. Nixon RA (2003) The calpains in aging and aging-related diseases. Ageing Res Rev 2:407-418.

    PubMed  CAS  Google Scholar 

  27. Ono Y, H Sorimachi (2012) Calpains: an elaborate proteolytic system. Biochim Biophys Acta 1824:224-236.

    PubMed  CAS  Google Scholar 

  28. Mansuy IM (2003) Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun 311:1195-1208.

    PubMed  CAS  Google Scholar 

  29. Musson RE, NP Smit (2011) Regulatory mechanisms of calcineurin phosphatase activity. Curr Med Chem 18:301-315.

    PubMed  CAS  Google Scholar 

  30. Rusnak F, P Mertz (2000) Calcineurin: form and function. Physiol Rev 80:1483-1521.

    PubMed  CAS  Google Scholar 

  31. Gil-Parrado S, O Popp, TA Knoch, et al (2003) Subcellular localization and in vivo subunit interactions of ubiquitous mu-calpain. J Biol Chem 278:16336-16346.

    PubMed  CAS  Google Scholar 

  32. Yoshizawa T, H Sorimachi, S Tomioka, et al (1995) Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun 208:376-383.

    PubMed  CAS  Google Scholar 

  33. Nixon RA (1986) Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: preferential localization of CANP activities in neurons. J Neurosci 6:1264-1271.

    PubMed  CAS  Google Scholar 

  34. Siman R (1992) Proteolytic mechanism for the neurodegeneration of Alzheimer’s disease. Ann N Y Acad Sci 674:193-202.

    PubMed  CAS  Google Scholar 

  35. Siman R, M Baudry, G Lynch (1984) Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci U S A 81:3572-3576.

    PubMed  CAS  Google Scholar 

  36. D’Orsi B, H Bonner, LP Tuffy, et al (2012) Calpains are downstream effectors of bax-dependent excitotoxic apoptosis. J Neurosci 32:1847-1858.

    PubMed  Google Scholar 

  37. Siman R, M Baudry, G Lynch (1985) Regulation of glutamate receptor binding by the cytoskeletal protein fodrin. Nature 313:225-228.

    PubMed  CAS  Google Scholar 

  38. Bi X, V Chang, E Molnar, et al (1996) The C-terminal domain of glutamate receptor subunit 1 is a target for calpain-mediated proteolysis. Neuroscience 73:903-906.

    PubMed  CAS  Google Scholar 

  39. Bi X, J Chen, S Dang, et al (1997) Characterization of calpain-mediated proteolysis of GluR1 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in rat brain. J Neurochem 68:1484-1494.

    PubMed  CAS  Google Scholar 

  40. Bi X, Y Rong, J Chen, et al (1998) Calpain-mediated regulation of NMDA receptor structure and function. Brain Res 790:245-253.

    PubMed  CAS  Google Scholar 

  41. Bi X, G Tocco, M Baudry (1994) Calpain-mediated regulation of AMPA receptors in adult rat brain. Neuroreport 6:61-64.

    PubMed  CAS  Google Scholar 

  42. Dong YN, EA Waxman, DR Lynch (2004) Interactions of postsynaptic density-95 and the NMDA receptor 2 subunit control calpain-mediated cleavage of the NMDA receptor. J Neurosci 24:11035-11045.

    PubMed  CAS  Google Scholar 

  43. Gascon S, M Sobrado, JM Roda, et al (2008) Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol Psychiatry 13:99-114.

    PubMed  CAS  Google Scholar 

  44. Jourdi H, X Lu, T Yanagihara, et al (2005) Prolonged positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induces calpain-mediated PSD-95/Dlg/ZO-1 protein degradation and AMPA receptor down-regulation in cultured hippocampal slices. J Pharmacol Exp Ther 314:16-26.

    PubMed  CAS  Google Scholar 

  45. Lu X, Y Rong, M Baudry (2000) Calpain-mediated degradation of PSD-95 in developing and adult rat brain. Neurosci Lett 286:149-153.

    PubMed  CAS  Google Scholar 

  46. Sessoms JS, SJ Chen, DM Chetkovich, et al (1992) Ca(2+)-induced persistent protein kinase C activation in rat hippocampal homogenates. Second Messengers Phosphoproteins 14:109-126.

    PubMed  Google Scholar 

  47. Suzuki T, K Okumura-Noji, A Ogura, et al (1992) Calpain may produce a Ca(2+)-independent form of kinase C in long-term potentiation. Biochem Biophys Res Commun 189:1515-1520.

    PubMed  CAS  Google Scholar 

  48. Wu HY, K Tomizawa, Y Oda, et al (2004) Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. J Biol Chem 279:4929-4940.

    PubMed  CAS  Google Scholar 

  49. Kuwako K, I Nishimura, T Uetsuki, et al (2002) Activation of calpain in cultured neurons overexpressing Alzheimer amyloid precursor protein. Brain Res Mol Brain Res 107:166-175.

    PubMed  CAS  Google Scholar 

  50. Mohmmad Abdul H, I Baig, H Levine, 3rd, et al (2011) Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric Abeta in primary cell culture. Aging Cell 10:103-113.

    PubMed  Google Scholar 

  51. Tamada Y, C Fukiage, S Daibo, et al (2002) Involvement of calpain in hypoxia-induced damage in rat retina in vitro. Comp Biochem Physiol B Biochem Mol Biol 131:221-225.

    PubMed  Google Scholar 

  52. Blomgren K, C Zhu, X Wang, et al (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 276:10191-10198.

    PubMed  CAS  Google Scholar 

  53. Ostwald K, H Hagberg, P Andine, et al (1993) Upregulation of calpain activity in neonatal rat brain after hypoxic-ischemia. Brain Res 630:289-294.

    PubMed  CAS  Google Scholar 

  54. Bi X, V Chang, R Siman, et al (1996) Regional distribution and time-course of calpain activation following kainate-induced seizure activity in adult rat brain. Brain Res 726:98-108.

    PubMed  CAS  Google Scholar 

  55. Schoch KM, HN Evans, JM Brelsfoard, et al (2012) Calpastatin overexpression limits calpain-mediated proteolysis and behavioral deficits following traumatic brain injury. Exp Neurol 236:371-382.

    PubMed  CAS  Google Scholar 

  56. McGinn MJ, BJ Kelley, L Akinyi, et al (2009) Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion. J Neuropathol Exp Neurol 68:241-249.

    PubMed  CAS  Google Scholar 

  57. Saatman KE, D Bozyczko-Coyne, V Marcy, et al (1996) Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J Neuropathol Exp Neurol 55:850-860.

    PubMed  CAS  Google Scholar 

  58. Liu F, I Grundke-Iqbal, K Iqbal, et al (2005) Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J Biol Chem 280:37755-37762.

    PubMed  CAS  Google Scholar 

  59. Saito K, JS Elce, JE Hamos, et al (1993) Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A 90:2628-2632.

    PubMed  CAS  Google Scholar 

  60. Mouatt-Prigent A, JO Karlsson, Y Agid, et al (1996) Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience 73:979-987.

    PubMed  CAS  Google Scholar 

  61. Shields DC, KE Schaecher, TC Saido, et al (1999) A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc Natl Acad Sci U S A 96:11486-11491.

    PubMed  CAS  Google Scholar 

  62. Huang W, J Fileta, I Rawe, et al (2010) Calpain activation in experimental glaucoma. Invest Ophthalmol Vis Sci 51:3049-3054.

    PubMed  Google Scholar 

  63. Oka T, Y Tamada, E Nakajima, et al (2006) Presence of calpain-induced proteolysis in retinal degeneration and dysfunction in a rat model of acute ocular hypertension. J Neurosci Res 83:1342-1351.

    PubMed  CAS  Google Scholar 

  64. Crocker SJ, PD Smith, V Jackson-Lewis, et al (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. J Neurosci 23:4081-4091.

    PubMed  CAS  Google Scholar 

  65. Das A, DP Garner, AM Del Re, et al (2006) Calpeptin provides functional neuroprotection to rat retinal ganglion cells following Ca2+ influx. Brain Res 1084:146-157.

    PubMed  CAS  Google Scholar 

  66. Grant RJ, LH Sellings, SJ Crocker, et al (2009) Effects of calpain inhibition on dopaminergic markers and motor function following intrastriatal 6-hydroxydopamine administration in rats. Neuroscience 158:558-569.

    PubMed  CAS  Google Scholar 

  67. Hassen GW, J Feliberti, L Kesner, et al (2008) Prevention of axonal injury using calpain inhibitor in chronic progressive experimental autoimmune encephalomyelitis. Brain Res 1236:206-215.

    PubMed  Google Scholar 

  68. Trinchese F, M Fa, S Liu, et al (2008) Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. J Clin Invest 118:2796-2807.

    PubMed  CAS  Google Scholar 

  69. Vaisid T, NS Kosower, A Katzav, et al (2007) Calpastatin levels affect calpain activation and calpain proteolytic activity in APP transgenic mouse model of Alzheimer’s disease. Neurochem Int 51:391-397.

    PubMed  CAS  Google Scholar 

  70. Chen Q, M Paillard, L Gomez, et al (2011) Activation of mitochondrial mu-calpain increases AIF cleavage in cardiac mitochondria during ischemia-reperfusion. Biochem Biophys Res Commun 415:533-538.

    PubMed  CAS  Google Scholar 

  71. Choi WS, EH Lee, CW Chung, et al (2001) Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J Neurochem 77:1531-1541.

    PubMed  CAS  Google Scholar 

  72. McGinnis KM, ME Gnegy, YH Park, et al (1999) Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun 263:94-99.

    PubMed  CAS  Google Scholar 

  73. Ozaki T, T Yamashita, S Ishiguro (2009) Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim Biophys Acta 1793:1848-1859.

    PubMed  CAS  Google Scholar 

  74. Valero JG, A Cornut-Thibaut, R Juge, et al (2012) micro-Calpain conversion of antiapoptotic Bfl-1 (BCL2A1) into a prodeath factor reveals two distinct alpha-helices inducing mitochondria-mediated apoptosis. PLoS One 7:e38620.

    Google Scholar 

  75. Kopil CM, AP Siebert, JK Foskett, et al (2012) Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor impairs ER Ca(2+) buffering and causes neurodegeneration in primary cortical neurons. J Neurochem 123:147-158.

    PubMed  CAS  Google Scholar 

  76. Kopil CM, H Vais, KH Cheung, et al (2011) Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1) has InsP(3)-independent gating and disrupts intracellular Ca(2+) homeostasis. J Biol Chem 286:35998-36010.

    PubMed  CAS  Google Scholar 

  77. Pottorf WJ, 2nd, TM Johanns, SM Derrington, et al (2006) Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons. J Neurochem 98:1646-1656.

    PubMed  CAS  Google Scholar 

  78. Hell JW, RE Westenbroek, LJ Breeze, et al (1996) N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. Proc Natl Acad Sci U S A 93:3362-3367.

    PubMed  CAS  Google Scholar 

  79. Kissinger CR, HE Parge, DR Knighton, et al (1995) Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378:641-644.

    PubMed  CAS  Google Scholar 

  80. Stemmer PM, CB Klee (1994) Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B published erratum appears in Biochemistry 1995 Dec 5;34(48):15880.. Biochemistry 33:6859-6866.

    PubMed  CAS  Google Scholar 

  81. Wu HY, E Hudry, T Hashimoto, et al (2012) Distinct dendritic spine and nuclear phases of calcineurin activation after exposure to amyloid-beta revealed by a novel fluorescence resonance energy transfer assay. J Neurosci 32:5298-5309.

    PubMed  CAS  Google Scholar 

  82. Li N, Z Zhang, W Zhang, et al (2011) Calcineurin B subunit interacts with proteasome subunit alpha type 7 and represses hypoxia-inducible factor-1alpha activity via the proteasome pathway. Biochem Biophys Res Commun 405:468-472.

    PubMed  CAS  Google Scholar 

  83. Li W, RE Handschumacher (2002) Identification of two calcineurin B-binding proteins: tubulin and heat shock protein 60. Biochim Biophys Acta 1599:72-81.

    PubMed  CAS  Google Scholar 

  84. Liu L, Z Su, S Xin, et al (2012) The calcineurin B subunit (CnB) is a new ligand of integrin alphaM that mediates CnB-induced Apo2L/TRAIL expression in macrophages. J Immunol 188:238-247.

    PubMed  CAS  Google Scholar 

  85. Saeki M, Y Irie, L Ni, et al (2007) Calcineurin potentiates the activation of procaspase-3 by accelerating its proteolytic maturation. J Biol Chem 282:11786-11794.

    PubMed  CAS  Google Scholar 

  86. Kuno T, H Mukai, A Ito, et al (1992) Distinct cellular expression of calcineurin A alpha and A beta in rat brain. J Neurochem 58:1643-1651.

    PubMed  CAS  Google Scholar 

  87. Abdul HM, MA Sama, JL Furman, et al (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 29:12957-12969.

    PubMed  Google Scholar 

  88. Aramburu J, J Heitman, GR Crabtree (2004) Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep 5:343-348.

    PubMed  CAS  Google Scholar 

  89. Baine I, BT Abe, F Macian (2009) Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol Rev 231:225-240.

    PubMed  CAS  Google Scholar 

  90. Takaishi T, N Saito, T Kuno, et al (1991) Differential distribution of the mRNA encoding two isoforms of the catalytic subunit of calcineurin in the rat brain. Biochem Biophys Res Commun 174:393-398.

    PubMed  CAS  Google Scholar 

  91. de Leon MJ, A Convit, S DeSanti, et al (1995) The hippocampus in aging and Alzheimer’s disease. Neuroimaging Clin N Am 5:1-17.

    PubMed  Google Scholar 

  92. Scheff SW, DA Price (2006) Alzheimer’s disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimers Dis 9:101-115.

    PubMed  Google Scholar 

  93. Klee CB, TH Crouch, MH Krinks (1979) Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci U S A 76:6270-6273.

    PubMed  CAS  Google Scholar 

  94. Goto S, Y Matsukado, Y Mihara, et al (1986) The distribution of calcineurin in rat brain by light and electron microscopic immunohistochemistry and enzyme-immunoassay. Brain Res 397:161-172.

    PubMed  CAS  Google Scholar 

  95. Celsi F, M Svedberg, C Unger, et al (2007) Beta-amyloid causes downregulation of calcineurin in neurons through induction of oxidative stress. Neurobiol Dis 26:342-352.

    PubMed  CAS  Google Scholar 

  96. Hashimoto T, T Kawamata, N Saito, et al (1998) Isoform-specific redistribution of calcineurin A alpha and A beta in the hippocampal CA1 region of gerbils after transient ischemia. J Neurochem 70:1289-1298.

    PubMed  CAS  Google Scholar 

  97. Norris CM, I Kadish, EM Blalock, et al (2005) Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J Neurosci 25:4649-4658.

    PubMed  CAS  Google Scholar 

  98. Halpain S, P Greengard (1990) Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2. Neuron 5:237-246.

    PubMed  CAS  Google Scholar 

  99. Meberg PJ, S Ono, LS Minamide, et al (1998) Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. Cell Motil Cytoskeleton 39:172-190.

    PubMed  CAS  Google Scholar 

  100. Wang Y, F Shibasaki, K Mizuno (2005) Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem 280:12683-12689.

    PubMed  CAS  Google Scholar 

  101. Snyder GL, S Galdi, AA Fienberg, et al (2003) Regulation of AMPA receptor dephosphorylation by glutamate receptor agonists. Neuropharmacology 45:703-713.

    PubMed  CAS  Google Scholar 

  102. Kam AY, D Liao, HH Loh, et al (2010) Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits. J Neurosci 30:15304-15316.

    PubMed  CAS  Google Scholar 

  103. Kim SM, SM Ahn, BS Go, et al (2009) Alterations in AMPA receptor phosphorylation in the rat striatum following acute and repeated cocaine administration. Neuroscience 163:618-626.

    PubMed  CAS  Google Scholar 

  104. Unoki T, S Matsuda, W Kakegawa, et al (2012) NMDA receptor-mediated PIP5K activation to produce PI(4,5)P(2) is essential for AMPA receptor endocytosis during LTD. Neuron 73:135-148.

    PubMed  CAS  Google Scholar 

  105. Malinow R, RC Malenka (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103-126.

    PubMed  CAS  Google Scholar 

  106. Bito H, K Deisseroth, RW Tsien (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203-1214.

    PubMed  CAS  Google Scholar 

  107. Lin CH, SH Yeh, HY Lu, et al (2003) The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. J Neurosci 23:8310-8317.

    PubMed  CAS  Google Scholar 

  108. Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5:472-484.

    PubMed  CAS  Google Scholar 

  109. Graef IA, PG Mermelstein, K Stankunas, et al (1999) L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401:703-708.

    PubMed  CAS  Google Scholar 

  110. Groth RD, PG Mermelstein (2003) Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression. J Neurosci 23:8125-8134.

    PubMed  CAS  Google Scholar 

  111. Canellada A, BG Ramirez, T Minami, et al (2008) Calcium/calcineurin signaling in primary cortical astrocyte cultures: Rcan1-4 and cyclooxygenase-2 as NFAT target genes. Glia 56:709-722.

    PubMed  Google Scholar 

  112. Fernandez AM, S Fernandez, P Carrero, et al (2007) Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci 27:8745-8756.

    PubMed  CAS  Google Scholar 

  113. Sama MA, DM Mathis, JL Furman, et al (2008) Interleukin-1beta-dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. J Biol Chem 283:21953-21964.

    PubMed  CAS  Google Scholar 

  114. Reese LC, G Taglialatela (2011) A role for calcineurin in Alzheimer’s disease. Curr Neuropharmacol 9:685-692.

    PubMed  CAS  Google Scholar 

  115. Halpain S, A Hipolito, L Saffer (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 18:9835-9844.

    PubMed  CAS  Google Scholar 

  116. Shankar GM, BL Bloodgood, M Townsend, et al (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866-2875.

    PubMed  CAS  Google Scholar 

  117. Tackenberg C, R Brandt (2009) Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau. J Neurosci 29:14439-14450.

    PubMed  CAS  Google Scholar 

  118. Wu HY, E Hudry, T Hashimoto, et al (2010) Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci 30:2636-2649.

    PubMed  CAS  Google Scholar 

  119. Wang HG, N Pathan, IM Ethell, et al (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339-343.

    PubMed  CAS  Google Scholar 

  120. Springer JE, RD Azbill, SA Nottingham, et al (2000) Calcineurin-mediated BAD dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury. J Neurosci 20:7246-7251.

    PubMed  CAS  Google Scholar 

  121. Shioda N, F Han, S Moriguchi, et al (2007) Constitutively active calcineurin mediates delayed neuronal death through Fas-ligand expression via activation of NFAT and FKHR transcriptional activities in mouse brain ischemia. J Neurochem 102:1506-1517.

    PubMed  CAS  Google Scholar 

  122. Nagamoto-Combs K, CK Combs (2010) Microglial phenotype is regulated by activity of the transcription factor, NFAT (nuclear factor of activated T cells). J Neurosci 30:9641-9646.

    PubMed  CAS  Google Scholar 

  123. Carafoli E, A Genazzani, D Geurini (1999) Calcium controls the transcription of its own transporters and channels in developing neurons. Biochem Biophys Res Comm 266:624-632.

    PubMed  CAS  Google Scholar 

  124. Groth RD, RL Dunbar, PG Mermelstein (2003) Calcineurin regulation of neuronal plasticity. Biochem Biophys Res Commun 311:1159-1171.

    PubMed  CAS  Google Scholar 

  125. Norris CM, EM Blalock, KC Chen, et al (2010) Hippocampal ‘zipper’ slice studies reveal a necessary role for calcineurin in the increased activity of L-type Ca(2+) channels with aging. Neurobiol Aging 31:328-338.

    PubMed  CAS  Google Scholar 

  126. Kurz JE, JT Parsons, A Rana, et al (2005) A significant increase in both basal and maximal calcineurin activity following fluid percussion injury in the rat. J Neurotrauma 22:476-490.

    PubMed  Google Scholar 

  127. Miletic G, KM Sullivan, AM Dodson, et al (2011) Changes in calcineurin message, enzyme activity and protein content in the spinal dorsal horn are associated with chronic constriction injury of the rat sciatic nerve. Neuroscience 188:142-147.

    PubMed  CAS  Google Scholar 

  128. Foster TC, KM Sharrow, JR Masse, et al (2001) Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci 21:4066-4073.

    PubMed  CAS  Google Scholar 

  129. Dineley KT, D Hogan, WR Zhang, et al (2007) Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol Learn Mem 88:217-224.

    PubMed  CAS  Google Scholar 

  130. Cho HJ, SM Jin, HD Youn, et al (2008) Disrupted intracellular calcium regulates BACE1 gene expression via nuclear factor of activated T cells 1 (NFAT 1) signaling. Aging Cell 7:137-147.

    PubMed  CAS  Google Scholar 

  131. Norris CM, S Halpain, TC Foster (1998) Alterations in the balance of protein kinase/phosphatase activities parallel reduced synaptic strength during aging. J Neurophysiol 80:1567-1570.

    PubMed  CAS  Google Scholar 

  132. Furman JL, DM Sama, JC Gant, et al (2012) Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 32:16129-16140.

    PubMed  CAS  Google Scholar 

  133. Hudry E, HY Wu, M Arbel-Ornath, et al (2012) Inhibition of the NFAT pathway alleviates amyloid beta neurotoxicity in a mouse model of Alzheimer’s disease. J Neurosci 32:3176-3192.

    PubMed  CAS  Google Scholar 

  134. Kuchibhotla KV, ST Goldman, CR Lattarulo, et al (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59:214-225.

    PubMed  CAS  Google Scholar 

  135. Yoshiyama Y, M Higuchi, B Zhang, et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337-351.

    PubMed  CAS  Google Scholar 

  136. Zawadzka M, B Kaminska (2005) A novel mechanism of FK506-mediated neuroprotection: downregulation of cytokine expression in glial cells. Glia 49:36-51.

    PubMed  Google Scholar 

  137. Kaminska B, K Gaweda-Walerych, M Zawadzka (2004) Molecular mechanisms of neuroprotective action of immunosuppressants – facts and hypotheses. J Cell Mol Med 8:45-58.

    PubMed  CAS  Google Scholar 

  138. Saganova K, J Galik, J Blasko, et al (2012) Immunosuppressant FK506: focusing on neuroprotective effects following brain and spinal cord injury. Life Sci 91:77-82.

    PubMed  CAS  Google Scholar 

  139. Rozkalne A, BT Hyman, TL Spires-Jones (2011) Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiol Dis 41:650-654.

    PubMed  CAS  Google Scholar 

  140. Hong HS, JY Hwang, SM Son, et al (2010) FK506 reduces amyloid plaque burden and induces MMP-9 in AbetaPP/PS1 double transgenic mice. J Alzheimers Dis 22:97-105.

    PubMed  CAS  Google Scholar 

  141. Taglialatela G, D Hogan, WR Zhang, et al (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95-99.

    Google Scholar 

  142. Dineley KT, R Kayed, V Neugebauer, et al (2010) Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice. J Neurosci Res 88:2923-2932.

    PubMed  CAS  Google Scholar 

  143. Vashishta A, A Habas, P Pruunsild, et al (2009) Nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) as a mediator of antiapoptotic transcription in NMDA receptor-stimulated cortical neurons. J Neurosci 29:15331-15340.

    PubMed  CAS  Google Scholar 

  144. Fernandez AM, S Jimenez, M Mecha, et al (2012) Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer’s pathology. Mol Psychiatry 17:705-718.

    PubMed  CAS  Google Scholar 

  145. Sanderson JL, ML Dell’Acqua (2011) AKAP signaling complexes in regulation of excitatory synaptic plasticity. Neuroscientist 17:321-336.

    PubMed  CAS  Google Scholar 

  146. Liu JO (2003) Endogenous protein inhibitors of calcineurin. Biochem Biophys Res Commun 311:1103-1109.

    PubMed  CAS  Google Scholar 

  147. Hilioti Z, DA Gallagher, ST Low-Nam, et al (2004) GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev 18:35-47.

    PubMed  CAS  Google Scholar 

  148. Liu Q, JC Busby, JD Molkentin (2009) Interaction between TAK1-TAB1-TAB2 and RCAN1-calcineurin defines a signalling nodal control point. Nat Cell Biol 11:154-161.

    Google Scholar 

  149. Ullrich V, D Namgaladze, D Frein (2003) Superoxide as inhibitor of calcineurin and mediator of redox regulation. Toxicol Lett 139:107-110.

    PubMed  CAS  Google Scholar 

  150. Klee CB, H Ren, X Wang (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367-13370.

    PubMed  CAS  Google Scholar 

  151. Quintana AR, D Wang, JE Forbes, et al (2005) Kinetics of calmodulin binding to calcineurin. Biochem Biophys Res Commun 334:674-680.

    PubMed  CAS  Google Scholar 

  152. Klee CB (1991) Concerted regulation of protein phosphorylation and dephosphorylation by calmodulin. Neurochem Res 16:1059-1065.

    PubMed  CAS  Google Scholar 

  153. Rumi-Masante J, FI Rusinga, TE Lester, et al (2012) Structural basis for activation of calcineurin by calmodulin. J Mol Biol 415:307-317.

    PubMed  CAS  Google Scholar 

  154. Manalan AS, CB Klee (1983) Activation of calcineurin by limited proteolysis. Proc Natl Acad Sci U S A 80:4291-4295.

    PubMed  CAS  Google Scholar 

  155. Tallant EA, WY Cheung (1984) Activation of bovine brain calmodulin-dependent protein phosphatase by limited trypsinization. Biochemistry 23:973-979.

    PubMed  CAS  Google Scholar 

  156. Kincaid RL, PR Giri, S Higuchi, et al (1990) Cloning and characterization of molecular isoforms of the catalytic subunit of calcineurin using nonisotopic methods. J Biol Chem 265:11312-11319.

    PubMed  CAS  Google Scholar 

  157. Tallant EA, LM Brumley, RW Wallace (1988) Activation of a calmodulin-dependent phosphatase by a Ca2+-dependent protease. Biochemistry 27:2205-2211.

    PubMed  CAS  Google Scholar 

  158. Wang KK, BD Roufogalis, A Villalobo (1989) Characterization of the fragmented forms of calcineurin produced by calpain I. Biochem Cell Biol 67:703-711.

    PubMed  CAS  Google Scholar 

  159. Asai A, J Qiu, Y Narita, et al (1999) High level calcineurin activity predisposes neuronal cells to apoptosis. J Biol Chem 274:34450-34458.

    PubMed  CAS  Google Scholar 

  160. Winder DG, IM Mansuy, M Osman, et al (1998) Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92:25-37.

    PubMed  CAS  Google Scholar 

  161. Mansuy IM, M Mayford, B Jacob, et al (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92:39-49.

    PubMed  CAS  Google Scholar 

  162. Mansuy IM, DG Winder, TM Moallem, et al (1998) Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21:257-265.

    PubMed  CAS  Google Scholar 

  163. Lakshmikuttyamma A, P Selvakumar, R Kakkar, et al (2003) Activation of calcineurin expression in ischemia-reperfused rat heart and in human ischemic myocardium. J Cell Biochem 90:987-997.

    PubMed  CAS  Google Scholar 

  164. Burkard N, J Becher, C Heindl, et al (2005) Targeted proteolysis sustains calcineurin activation. Circulation 111:1045-1053.

    PubMed  CAS  Google Scholar 

  165. Braak H, E Braak (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 165:3-12.

    PubMed  CAS  Google Scholar 

  166. McGeer EG, PL McGeer (2010) Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 19:355-361.

    PubMed  Google Scholar 

  167. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005-1015.

    PubMed  CAS  Google Scholar 

  168. Molinuevo JL, A Llado, L Rami (2005) Memantine: targeting glutamate excitotoxicity in Alzheimer’s disease and other dementias. Am J Alzheimers Dis Other Demen 20:77-85.

    PubMed  Google Scholar 

  169. Hynd MR, HL Scott, PR Dodd (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583-595.

    PubMed  CAS  Google Scholar 

  170. Qian W, X Yin, W Hu, et al (2011) Activation of protein phosphatase 2B and hyperphosphorylation of Tau in Alzheimer’s disease. J Alzheimers Dis 23:617-627.

    PubMed  CAS  Google Scholar 

  171. Mufson EJ, L Binder, SE Counts, et al (2012) Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol 123:13-30.

    PubMed  CAS  Google Scholar 

  172. Li Q, J Fang, M Yang, et al (2010) Galantamine inhibits calpain-calcineurin signaling activated by beta-amyloid in human neuroblastoma SH-SY5Y cells. Neurosci Lett 480:173-177.

    Google Scholar 

  173. Rosenkranz K, C May, C Meier, et al (2012) Proteomic analysis of alterations induced by perinatal hypoxic-ischemic brain injury. J Proteome Res 11:5794-5803.

    PubMed  CAS  Google Scholar 

  174. Shioda N, S Moriguchi, Y Shirasaki, et al (2006) Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. J Neurochem 98:310-320.

    PubMed  CAS  Google Scholar 

  175. Quigley HA, RW Nickells, LA Kerrigan, et al (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774-786.

    PubMed  CAS  Google Scholar 

  176. Guo L, SE Moss, RA Alexander, et al (2005) Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 46:175-182.

    PubMed  Google Scholar 

  177. Nickells RW, GR Howell, I Soto, et al (2012) Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 35:153-179.

    PubMed  CAS  Google Scholar 

  178. Huang W, JB Fileta, A Dobberfuhl, et al (2005) Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc Natl Acad Sci U S A 102:12242-12247.

    PubMed  CAS  Google Scholar 

  179. Shields DC, KE Schaecher, EL Hogan, et al (2000) Calpain activity and expression increased in activated glial and inflammatory cells in penumbra of spinal cord injury lesion. J Neurosci Res 61:146-150.

    PubMed  CAS  Google Scholar 

  180. Shields DC, WR Tyor, GE Deibler, et al (1998) Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A 95:5768-5772.

    PubMed  CAS  Google Scholar 

  181. Shields DC, WR Tyor, GE Deibler, et al (1998) Increased calpain expression in experimental demyelinating optic neuritis: an immunocytochemical study. Brain Res 784:299-304.

    PubMed  CAS  Google Scholar 

  182. Feng ZH, J Hao, L Ye, et al (2011) Overexpression of mu-calpain in the anterior temporal neocortex of patients with intractable epilepsy correlates with clinicopathological characteristics. Seizure 20:395-401.

    PubMed  Google Scholar 

  183. Gray BC, P Skipp, VM O’Connor, et al (2006) Increased expression of glial fibrillary acidic protein fragments and mu-calpain activation within the hippocampus of prion-infected mice. Biochem Soc Trans 34:51-54.

    PubMed  CAS  Google Scholar 

  184. Cao X, Y Zhang, L Zou, et al (2010) Persistent oxygen-glucose deprivation induces astrocytic death through two different pathways and calpain-mediated proteolysis of cytoskeletal proteins during astrocytic oncosis. Neurosci Lett 479:118-122.

    PubMed  CAS  Google Scholar 

  185. Du S, A Rubin, S Klepper, et al (1999) Calcium influx and activation of calpain I mediate acute reactive gliosis in injured spinal cord. Exp Neurol 157:96-105.

    PubMed  CAS  Google Scholar 

  186. Aliabadi AZ, AO Zuckermann, M Grimm (2007) Immunosuppressive therapy in older cardiac transplant patients. Drugs Aging 24:913-932.

    PubMed  CAS  Google Scholar 

  187. Marks AR (1996) Cellular functions of immunophilins. Physiol Rev 76:631-649.

    PubMed  CAS  Google Scholar 

  188. Aramburu J, MB Yaffe, C Lopez-Rodriguez, et al (1999) Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285:2129-2133.

    PubMed  CAS  Google Scholar 

  189. Noguchi H, M Matsushita, T Okitsu, et al (2004) A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat Med 10:305-309.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Norris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Norris, C.M. (2014). Calpain Interactions with the Protein Phosphatase Calcineurin in Neurodegeneration. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_2

Download citation

Publish with us

Policies and ethics