Skip to main content

Role of Matrix Metalloproteinases in Atherosclerosis

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

  • 1286 Accesses

Abstract

Matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs) play a complex role in the pathogenesis of atherosclerosis and plaque instability. Proposed roles for MMPs included matrix degradation but also regulation of the proliferation, migration and apoptosis of monocytes, macrophages and vascular smooth muscle cells. Accordingly, in vitro and in vivo studies have demonstrated that individual MMPs are utilised by distinct cell types to modulate their behaviour. As a result some MMPs clearly promote plaque growth and development of “vulnerable” morphologies in experimental models but others do not. Likewise some MMPs associate with vulnerable atherosclerotic plaque phenotypes in man, whilst others correlate with stable lesions. This premise is underlined by the fact that in both mouse and man, broad-spectrum MMP inhibition fails to exert beneficial effects on atherosclerotic plaque development and stability. Given that MMPs exert such diversity on atherosclerotic lesions, one therapeutic strategy may be to selectively inhibit those MMPs particularly implicated in adverse plaque phenotypes. An example is our recent use of a selective MMP-12 inhibitor in the apolipoprotein E (Apoe) mouse model. The inhibitor retards progression of established plaques, in part by reducing the recruitment of monocytes into plaques but also by preventing apoptosis of foam-cell macrophages and calcification. Consequently, although our understanding of the multifaceted role MMPs play during the development, progression and rupture of atherosclerotic plaques are becoming clearer; the need for selective MMP inhibition is required for the translation of the experimental findings to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virmani R, Burke AP, Farb A, et al (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13-C18

    Article  PubMed  CAS  Google Scholar 

  2. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32:2045-2051

    Article  PubMed  CAS  Google Scholar 

  3. Newby AC (2007) Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 17:253-258

    Article  PubMed  CAS  Google Scholar 

  4. Dollery CM, Libby P (2006) Atherosclerosis and proteinase activation. Cardiovasc Res 69:625-635

    Article  PubMed  CAS  Google Scholar 

  5. Hansson GK (2005) Mechanisms of disease - Inflammation, atherosclerosis, and coronary artery disease. New Engl J Med 352:1685-1695

    Article  PubMed  CAS  Google Scholar 

  6. Johnson JL (2007) Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 5:265-282

    Article  PubMed  CAS  Google Scholar 

  7. Galis ZS, Sukhova GK, Lark MW, et al (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493-2503

    Article  PubMed  CAS  Google Scholar 

  8. Li Z, Li L, Zielke HR, et al (1996) Increased expression of 72-kd type IV collagenase (MMP-2) in human aortic atherosclerotic lesions. Am J Pathol 148:121-128

    PubMed  CAS  Google Scholar 

  9. Henney AM, Wakeley PR, Davies MJ, et al (1991) Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA 88:8154-8158

    Article  PubMed  CAS  Google Scholar 

  10. Halpert I, Sires UI, Roby JD, et al (1996) Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme Proc Natl Acad Sci USA 93:9748-9753

    Google Scholar 

  11. Herman MP, Sukhova GK, Libby P, et al (2001) Expression of Neutrophil Collagenase (Matrix Metalloproteinase-8) in Human Atheroma: A Novel Collagenolytic Pathway Suggested by Transcriptional Profiling. Circulation 104:1899-1904

    Article  PubMed  CAS  Google Scholar 

  12. Schönbeck U, Mach F, Sukhova GK, et al (1999) Expression of Stromelysin-3 in Atherosclerotic Lesions: Regulation via CD40-CD40 Ligand Signaling In Vitro and In Vivo. J Exp Med 189:843-853

    Article  PubMed  Google Scholar 

  13. Sukhova GK, Schönbeck U, Rabkin E, et al (1999) Evidence for Increased Collagenolysis by Interstitial Collagenases-1 and -3 in Vulnerable Human Atheromatous Plaques. Circulation 99:2503-2509

    Article  PubMed  CAS  Google Scholar 

  14. Rajavashisth TB, Xu X-P, Jovinge S, et al (1999) Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques. Circ Res 99:3101-3109

    Google Scholar 

  15. Uzui H, Harpf A, Liu M, et al (2002) Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque Role of activated macrophages and inflammatory cytokines. Circ Res 106:3024-3030

    Article  CAS  Google Scholar 

  16. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in neointima formation and atherosclerotic plaque rupture Physiol Rev 85:1-31

    Article  PubMed  CAS  Google Scholar 

  17. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562-573

    Article  PubMed  CAS  Google Scholar 

  18. Murphy G (2010) Fell-Muir Lecture: Metalloproteinases: from demolition squad to master regulators. Int J Exp Path 91:303-313

    Article  CAS  Google Scholar 

  19. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Science 115:3719-3727

    Article  PubMed  CAS  Google Scholar 

  20. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. BBA-Mol Cell Res 1803:55-71

    CAS  Google Scholar 

  21. Golledge J, Norman PE (2010) Atherosclerosis and Abdominal Aortic Aneurysm: Cause, Response, or Common Risk Factors? Arterioscler Thromb Vasc Biol 30:1075-1077

    Article  PubMed  CAS  Google Scholar 

  22. Virmani R, Kolodgie FD, Burke AP, et al (2000) Lessons from sudden coronary death - A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262-1275

    Article  PubMed  CAS  Google Scholar 

  23. Reel B, Sala-Newby GB, Huang WC, et al (2011) Diverse patterns of cyclooxygenase-independent metalloproteinase gene regulation in human monocytes. Br J Pharmacol 163:1679-1690

    Article  PubMed  CAS  Google Scholar 

  24. Matias-Roman S, Galvez BG, Genis L, et al (2005) Membrane type 1-matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium. Blood 105:3956-3964

    Article  PubMed  CAS  Google Scholar 

  25. May AE, Schmidt R, Bulbul O, et al (2005) Plasminogen and matrix metalloproteinase activation by enzymatically modified low density lipoproteins in monocytes and smooth muscle cells. Thromb Haemostasis 93:710-715

    CAS  Google Scholar 

  26. Sithu SD, English WR, Olson P, et al (2007) Membrane-type 1-matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration. J Biol Chem 282:25010-25019

    Article  PubMed  CAS  Google Scholar 

  27. Di Gregoli K, Johnson JL (2012) Role of colony-stimulating factors in atherosclerosis .Curr Opin Lipidol 23:412-421

    Article  PubMed  Google Scholar 

  28. Libby P, Ridker PM, Hansson GK (2009) Inflammation in Atherosclerosis: From Pathophysiology to Practice. J Am Coll Cardiol 54:2129-2138

    Article  PubMed  CAS  Google Scholar 

  29. Schönbeck U, Libby P (2001) CD40 signaling and plaque instability. Circ Res 89:1092-1103

    Article  PubMed  Google Scholar 

  30. Newby AC (2012) Matrix metalloproteinase inhibition therapy for vascular diseases. Vasc Pharmacol 56:232-244

    Google Scholar 

  31. Galis ZS, Sukhova GK, Libby P (1995) Microscopic localisation of active proteases by in situ zymography: Detection of matrix metalloproteinase activity in vascular tissue FASEB J 9:974-980

    Google Scholar 

  32. Johnson JL, Jackson CL, Angelini GD, et al (1998) Activation of Matrix-Degrading Metalloproteinases by Mast Cell Proteases in Atherosclerotic Plaques. Arterioscler Thromb Vasc Biol 18:1707-1715

    Article  PubMed  CAS  Google Scholar 

  33. Monaco C, Gregan SM, Navin TJ, et al (2009) Toll-Like Receptor-2 Mediates Inflammation and Matrix Degradation in Human Atherosclerosis. Circulation 120:2462-2469

    Article  PubMed  CAS  Google Scholar 

  34. Thomas AC, Sala-Newby GB, Ismail Y, et al (2007) Genomics of foam cells and nonfoamy macrophages from rabbits identifies arginase-1 as a differential regulator of nitric oxide production. Arterioscler Thromb Vasc Biol 27:571-577

    Article  PubMed  CAS  Google Scholar 

  35. Johnson JL, Sala-Newby GB, Ismail Y, et al (2008) Low tissue inhibitor of metalloproteinases 3 and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam-cell macrophages. Arterioscler Thromb Vasc Biol 28:1647-1653

    Article  PubMed  CAS  Google Scholar 

  36. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868-874

    Article  PubMed  CAS  Google Scholar 

  37. Pauly RR, Passaniti A, Bilato C, et al (1994) Migration of Cultured Vascular Smooth Muscle Cells Through a Basement Membrane Barrier Requires Type IV Collagenase Activity and Is Inhibited by Cellular Differentiation. Circ Res 75:41-54

    Article  PubMed  CAS  Google Scholar 

  38. Haque NS, Fallon JT, Pan JJ, et al (2004) Chemokine receptor-8 (CCR8) mediates human vascular smooth muscle cell chemotaxis and metalloproteinase-2 secretion. Blood 103:1296-1304

    Article  PubMed  CAS  Google Scholar 

  39. Mason DP, Kenagy RD, Hasenstab D, et al (1999) Matrix Metalloproteinase-9 Overexpression Enhances Vascular Smooth Muscle Migration and Alters Remodeling in the Injured Rat Carotid Artery. Circ Res 85:1179-1185

    Article  PubMed  CAS  Google Scholar 

  40. Filippov S, Koenig GC, Chun T-H, et al (2005) MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J Exp Med 5:663-671

    Article  Google Scholar 

  41. Kuzuya M, Kanda S, Sasaki T, et al (2003) Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation 108:1375-1381

    Article  PubMed  CAS  Google Scholar 

  42. Galis ZS, Johnson C, Godin D, et al (2002) Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 91:852-859

    Article  PubMed  CAS  Google Scholar 

  43. Kajita M, Itoh Y, Chiba T, et al (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893-904

    Article  PubMed  CAS  Google Scholar 

  44. Yu WH, Woessner JF, McNeish JD, et al (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Gene Dev 16:307-323

    Article  PubMed  CAS  Google Scholar 

  45. Johnson C, Galis ZS (2004) Matrix metalloproteinase-2 and-9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler Thromb Vasc Biol 24:54-60

    Article  PubMed  CAS  Google Scholar 

  46. George SJ, Beeching CA (2006) Cadherin : catenin complex: A novel regulator of vascular smooth muscle cell behaviour. Atherosclerosis 188:1-11

    Article  PubMed  CAS  Google Scholar 

  47. Dwivedi A, George SJ (2004) Cadherins, MMPs and proliferation. Trends Cardiovasc Med 14:100-105

    Article  PubMed  Google Scholar 

  48. Corti R, Badimon JJ (2002) Biologic aspects of vulnerable plaque. Curr Opin Cardiol 17:616-625

    Article  PubMed  Google Scholar 

  49. Haider N, Hartung D, Fujimoto S, et al (2009) Dual molecular imaging for targeting metalloproteinase activity and apoptosis in atherosclerosis: molecular imaging facilitates understanding of pathogenesis. J Nucl Cardiol 16:753-762

    Article  PubMed  Google Scholar 

  50. Johnson JL, Devel L, Czarny B, et al (2011) A Selective Matrix Metalloproteinase-12 Inhibitor Retards Atherosclerotic Plaque Development in Apolipoprotein E-Knockout Mice. Arterioscler Thromb Vasc Biol 31:528-535

    Article  PubMed  CAS  Google Scholar 

  51. Johnson JL, Baker AH, Oka K, et al (2006) Suppression of atherosclerotic plaque progression and instability by tissue inhibitor of metalloproteinase-2: Involvement of macrophage migration and apoptosis. Circulation 113:2435-2444

    Article  PubMed  CAS  Google Scholar 

  52. Falk E, Nakano M, Bentzon JF, et al (2013) Update on acute coronary syndromes: the pathologists’ view. Eur Heart J 34:719-728

    Article  PubMed  CAS  Google Scholar 

  53. Davì G, Patrono C (2007) Platelet Activation and Atherothrombosis. New Engl J Med 357:2482-2494

    Article  PubMed  Google Scholar 

  54. Davies MJ (2000) The pathophysiology of acute coronary syndromes Heart 83:361-366

    Google Scholar 

  55. Mannello F, Luchetti F, Falcieri E, et al (2005) Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis 10:19-24

    Article  PubMed  CAS  Google Scholar 

  56. Geng Y-J, Libby P (2002) Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol 22:1370 - 1380

    Article  PubMed  CAS  Google Scholar 

  57. de Boer OJ, van der Wal AC, Becker AE (2000) Atherosclerosis, inflammation, and infection. J Pathol 190:237-243

    Article  PubMed  Google Scholar 

  58. Galis ZS, Sukhova GK, Kranzhöfer R, et al (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 92:402-406

    Article  PubMed  CAS  Google Scholar 

  59. Plump AS, Smith JD, Hayek T, et al (1992) Severe Hypercholesterolemia and Atherosclerosis in Apolipoprotein E-Deficient Mice Created by Homologous Recombination in ES Cells. Cell 71:343-353

    Article  PubMed  CAS  Google Scholar 

  60. Nakashima Y, Plump AS, Raines EW, et al (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb Vasc Biol 14:133-140

    Article  CAS  Google Scholar 

  61. Ishibashi S, Brown MS, Goldstein JL, et al (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92:883-893

    Article  PubMed  CAS  Google Scholar 

  62. Jackson CL, Bennett MR, Biessen EAB, et al (2007) Assessment of Unstable Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 27:714-720

    Article  PubMed  CAS  Google Scholar 

  63. Lemaître V, O’Byrne TK, Borczuk AC, et al (2001) ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis. J Clin Invest 107:1227-1234

    Article  PubMed  Google Scholar 

  64. Kuzuya M, Nakamura K, Sasaki T, et al (2006) Effect of MMP-2 deficiency on atherosclerotic lesion formation in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 26:1120-1125

    Article  PubMed  CAS  Google Scholar 

  65. Silence J, Lupu F, Collen D, et al (2001) Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol 21:1440-1445

    Article  PubMed  CAS  Google Scholar 

  66. Johnson JL, George SJ, Newby AC, et al (2005) Divergent Effects of Matrix Metalloproteinases -3, -7, -9 and -12 on Atherosclerotic Plaque Stability in Mouse Brachiocephalic Arteries. Proc Natl Acad Sci USA 102:15575-15580

    Article  PubMed  CAS  Google Scholar 

  67. Laxton RC, Hu Y, Duchene J, et al (2009) A Role of Matrix Metalloproteinase-8 in Atherosclerosis. Circ Res 105:921-929

    Article  PubMed  CAS  Google Scholar 

  68. Luttun A, Lutgens E, Manderveld A, et al (2004) Loss of Matrix Metalloproteinase-9 or Matrix Metalloproteinase-12 Protects Apolipoprotein E-Deficient Mice Against Atherosclerotic Media Destruction but Differentially Affects Plaque Growth. Circulation 109:1408-1414

    Article  PubMed  CAS  Google Scholar 

  69. Gough PJ, Gomez IG, Wille PT, et al (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 116:59-69

    Article  PubMed  CAS  Google Scholar 

  70. de Nooijer R, Verkleij CJ, von der Thuesen JH, et al (2006) Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions, but not at earlier stages of atherogenesis. Arterioscler Thromb Vasc Biol 26:340-346

    Article  PubMed  Google Scholar 

  71. Liang J, Liu E, Yu Y, et al (2006) Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits. Circulation 113:1993-2001

    Article  PubMed  CAS  Google Scholar 

  72. Deguchi JO, Aikawa E, Libby P, et al (2005) Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation 112:2708-2715

    Article  PubMed  CAS  Google Scholar 

  73. Schneider F, Sukhova GK, Aikawa M, et al (2008) Matrix metalloproteinase-14 deficiency in bone marrow-derived cells promotes collagen accumulation in mouse atherosclerotic plaques. Circulation 117:931-939

    Article  PubMed  CAS  Google Scholar 

  74. Prescott MF, Sawyer WK, Von Linden-Reed J, et al (1999) Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP3, MMP-12, and MMP-13 and on restenosis in rats after balloon injury. Ann NY Acad Sci 878:179-190

    Article  PubMed  CAS  Google Scholar 

  75. Manning MW, Cassis LA, Daugherty A (2003) Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 23:483-488

    Article  PubMed  CAS  Google Scholar 

  76. Johnson JL, Fritsche-Danielson R, Behrendt M, et al (2006) Effect of Broad-Spectrum Matrix Metalloproteinase Inhibition on Atherosclerotic Plaque Stability. Cardiovasc Res 71:586-595

    Article  PubMed  CAS  Google Scholar 

  77. Quillard T, Tesmenitsky Y, Croce K, et al (2011) Selective Inhibition of Matrix Metalloproteinase-13 Increases Collagen Content of Established Mouse Atherosclerosis. Arterioscler Thromb Vasc Biol 31:2464-2472

    Article  PubMed  CAS  Google Scholar 

  78. Lemaître V, Soloway PD, D’Armiento J (2003) Increased medial degradation with pseudo-aneurysm formation in apolipoprotein E-knockout mice deficient in tissue inhibitor of metalloproteinases-1. Circulation 107:333-338

    Article  PubMed  Google Scholar 

  79. Silence J, Collen D, Lijnen HR (2002) Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res 90:897-903

    Article  PubMed  CAS  Google Scholar 

  80. Rouis M, Adamy C, Duverger N, et al (1999) Adenovirus-Mediated Overexpression of Tissue Inhibitor of Metalloproteinase-1 Reduces Atherosclerotic Lesions in Apolipoprotein E-Deficient Mice. Circulation 100:533-540

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason L. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Gregoli, K., Johnson, J.L. (2014). Role of Matrix Metalloproteinases in Atherosclerosis. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_13

Download citation

Publish with us

Policies and ethics