Skip to main content

Proteases and Their Role in Drug Development with an Emphasis in Cancer

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

  • 1277 Accesses

Abstract

Proteases play a fundamental role in multiple biological and pathological conditions including cancer. They contribute to cancer development and promotion by regulating the activities of growth factors/cytokines and signalling receptors, as well as the composition of the extracellular matrix, thereby suppressing cell death pathways and activating cell survival pathways. With strong evidence of protease involvement in cancer, proteases serve an important role in anticancer drug development. In this review we will first introduce key proteases along with their function in tumorigenesis. Finally we will discuss the key proteases as viable therapeutic targets for anticancer drug development. Further elucidation of the role of proteases in cancer will allow us to design more effective inhibitors and novel protease-based drugs for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 7(10): 800-808

    Article  PubMed  CAS  Google Scholar 

  2. Lopez-Otin C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev. Mol. Cell Biol. 3(7): 509-519

    Article  PubMed  CAS  Google Scholar 

  3. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nature Rev. Drug Discov. 5(9): 785-799

    Article  CAS  Google Scholar 

  4. Fisher A (1946) Mechanism of proteolytic activity of malignant tissue cells. Nature. 157: 442

    Article  Google Scholar 

  5. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 6(10): 764-775

    Article  PubMed  CAS  Google Scholar 

  6. Teitz T, Wei T, Valentine MB et al (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Med. 6(5): 529-535

    Article  PubMed  CAS  Google Scholar 

  7. Marino G, Uría JA, Puente XS et al (2003) Human autophagins, a family of cysteine proteases potentially implicated in cell degradation by autophagy. J. Biol. Chem. 278(6): 3671-3678

    Article  PubMed  CAS  Google Scholar 

  8. Hoeller D, Hecker CM, Dikic I (2006) Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nature Rev. Cancer. 6(10): 776-788

    Article  CAS  Google Scholar 

  9. Egeblad M, Werb Z (2002) New functions for matrix metalloproteinases in cancer progression. Nature Rev. Cancer. 2(3): 161-174

    Article  CAS  Google Scholar 

  10. Koblinskia JE, Ahrama M, Sloane BF (2000) Unraveling the role of proteases in cancer. Clinica Chimica Acta. 291(2): 113-135

    Article  Google Scholar 

  11. Lippens S, Kockx M, Knaapen M et al (2000) Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death and Differentiation. 7(12): 1218–1224

    Article  PubMed  CAS  Google Scholar 

  12. Eckhart L, Ballaun C, Uthman A et al (2005) Identification and characterization of a novel mammalian caspase with proapoptotic activity. J Biol Chem. 280(42): 35077-80

    Article  PubMed  CAS  Google Scholar 

  13. Sakata S, Yan Y, Satou Y et al (2007) Conserved function of caspase-8 in apoptosis during bony fish evolution. Gene. 396(1): 134-48

    Article  PubMed  CAS  Google Scholar 

  14. Eckhart L, Ballaun C, Hermann M et al (2008) Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Mol Biol Evol. 25(5): 831-41

    Article  PubMed  CAS  Google Scholar 

  15. Masumoto J, Zhou W, Chen FF et al (2003) Caspy, a zebrafish caspase, activated by ASC oligomerization is required for pharyngeal arch development. J Biol Chem. 278(6): 4268-76

    Article  PubMed  CAS  Google Scholar 

  16. Sakamaki K, Nozaki M, Kominami K et al (2007) The evolutionary conservation of the core components necessary for the extrinsic apoptotic signaling pathway, in Medaka fish. BMC Genomics. 8: 141

    Article  PubMed  Google Scholar 

  17. Shaham S (1998) Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. J Biol Chem. 273(52): 35109-17

    Article  PubMed  CAS  Google Scholar 

  18. Cikala M, Wilm B, Hobmayer E et al (1999) Identification of caspases and apoptosis in the simple metazoan Hydra. Curr Biol. 9:959-62

    Article  PubMed  CAS  Google Scholar 

  19. Lamkanfi M, Declercq W, Kalai M et al (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ. 9(17): 358-61

    Article  PubMed  CAS  Google Scholar 

  20. Terajima D, Shida K, Takada N et al (2003) Identification of candidate genes encoding the core components of the cell death machinery in the Ciona intestinalis genome. Cell Death Differ. 10(6): 749-53

    Article  PubMed  CAS  Google Scholar 

  21. Wiens M, Krasko A, Perovic S et al (2003) Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from Metazoa. Biochim Biophys Acta. 1593(2-3): 179-89

    Article  PubMed  CAS  Google Scholar 

  22. Weill M, Philips A, Chourrout D et al (2005) The caspase family in urochordates: distinct evolutionary fates in ascidians and larvaceans. Biol Cell. 97(11): 857-66

    Article  PubMed  CAS  Google Scholar 

  23. Dunn SR, Phillips WS, Spatafora JW et al (2006) Highly conserved caspase and Bcl-2 homologues from the sea anemone Aiptasia pallida: lower metazoans as models for the study of apoptosis evolution. J Mol Evol. 63(1): 95-107

    Article  PubMed  CAS  Google Scholar 

  24. Robertson AJ, Croce J, Carbonneau S et al (2006) The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol. 300(1): 321-34

    Article  PubMed  CAS  Google Scholar 

  25. Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ. 14(1): 32-43

    Article  PubMed  CAS  Google Scholar 

  26. Olsson M and Zhivotovsky B (2011) Caspases and cancer. Cell Death Differ. 18(9): 1441-1449

    Article  PubMed  CAS  Google Scholar 

  27. Stupack DG, Teitz T, Potter MD et al (2006) Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature. 439(7072): 95-99

    Article  PubMed  CAS  Google Scholar 

  28. Mandruzzato S, Brasseur F, Andry G et al (1997) CASP-8 mutation recognized by cytosolic T lymphocytes on a human head and neck carcinoma. J. Exp. Med. 186: 785-793

    Article  PubMed  CAS  Google Scholar 

  29. Soung YH, Lee JW, Kim SY et al (2005) CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res. 65(3): 815-821

    PubMed  CAS  Google Scholar 

  30. Shin MS, Kim HS, Kang CS et al (2002) Inactivating mutations of CASP 10 gene in non-Hodgkin lymphomas. Blood. 99(11): 4094-4099

    Article  PubMed  CAS  Google Scholar 

  31. Park WS, Lee JH, Shin MS et al (2002) Inactivating mutations of caspase- 10 gene in gastric cancer. Oncogene. 21(18): 2919-2925

    Article  PubMed  CAS  Google Scholar 

  32. Kataoka T (2005) The caspase-8 modulator c-FLIP. Crit Rev Immunol. 25(1): p. 31-58

    Article  PubMed  CAS  Google Scholar 

  33. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 10(8): 561-574

    Article  PubMed  CAS  Google Scholar 

  34. Rawlings ND, Morton FR, Kok CY et al (2008) MEROPS: the peptidase database. Nucleic Acids Res. 36(Database issue): D320–D325

    Google Scholar 

  35. Xia L, Kilb J, Wex H et al (1999) Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones. Biol. Chem. 380(6): 679–687

    Article  PubMed  CAS  Google Scholar 

  36. Shuja S, Murnane MJ (1996) Marked increases in cathepsin B and L activities distinguish papillary carcinoma of the thyroid from normal thyroid or thyroid with non-neoplastic disease. Int J Cancer. 66(4): 420–6

    Article  PubMed  CAS  Google Scholar 

  37. Hughes SJ, Glover TW, Zhu XX et al (1998) A novel amplicon at 8p22–23 results in overexpression of cathepsin B in esophageal adenocarcinoma. Proc. Natl Acad. Sci. USA. 95(21): 12410–12415

    Article  PubMed  CAS  Google Scholar 

  38. Linnerth NM, Sirbovan, K, Moorehead RA (2005) Use of a transgenic mouse model to identify markers of human lung tumors. Int. J. Cancer. 114(6): 977–982

    Article  PubMed  CAS  Google Scholar 

  39. Allinen, M, Beroukhim R, Cai L et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 6(1): 17–32

    Article  PubMed  CAS  Google Scholar 

  40. Flannery T, Gibson D, Mirakhur M et al (2003) The clinical significance of cathepsin S expression in human astrocytomas. Am. J. Pathol. 163(1): 175–182

    Article  PubMed  CAS  Google Scholar 

  41. Reinheckel T, Hagemann S, Dollwet-Mack S et al (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J. Cell Sci. 118(Pt 15): 3387-3395

    Article  PubMed  CAS  Google Scholar 

  42. Andreasen PA, Kjoller L, Christensen L et al (1997) The urokinase type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 72(1): 1-22

    Article  PubMed  CAS  Google Scholar 

  43. Dano K, Andreasen PA, Grondahl-Hansen K et al (1985) Plasminogen activators, tissue degradation and cancer. Adv Cancer Res. 44: 139-266

    Article  PubMed  CAS  Google Scholar 

  44. Plough M, Ellis V, Dano K (1994) Ligand interaction between urokinase type plasminogen activator and its receptor probed with 8-anilino- 1-naphthalenesulfonate: evidence for a hydrophobic binding site exposed only on the intact receptor. Biochemistry. 33(30): 8991- 8997

    Article  Google Scholar 

  45. Zhou HM, Nichols A, Meda P et al (2000) Urokinase-type plasminogen activator and its receptor synergize to promote pathogenic proteolysis. EMBO J. 19(17): 4817-4826

    Article  PubMed  CAS  Google Scholar 

  46. Rifkin DB (1997) Cross-talk among proteases and matrix in the control of growth factor action. Fibrinol Proteolysis. 11: 3-9

    Article  CAS  Google Scholar 

  47. Plouet J, Moro F, Bertagnolli S et al (1997) Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J Biol Chem. 272: 13390-13396

    Article  PubMed  CAS  Google Scholar 

  48. Mars WM, Zarnegar R, Michalopoulos GK (1993) Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Path. 143(3): p. 949-958

    PubMed  CAS  Google Scholar 

  49. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 22(4): 201-207.

    Article  PubMed  CAS  Google Scholar 

  50. Tyndall JDA, Kelso MJ, Clingan P et al (2008) Peptides and Small Molecules Targeting the Plasminogen Activation System: Towards Prophylactic Anti-Metastasis Drugs for Breast Cancer. Recent Patents on Anti-Cancer Drug Discovery. 3(1): 1-13

    Article  PubMed  CAS  Google Scholar 

  51. Hayes DF, Bast RC, Desch CE et al (1996) Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst. 88(20): 1456-66

    Article  PubMed  CAS  Google Scholar 

  52. Shapiro RL, Duquette JG, Roses DF et al (1996) Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (uPA)-deficient and wild type mice: cellular blue nevi invade but do not progress to malignant melanoma in uPA-deficient animals. Cancer Res. 56: 3597-3604

    PubMed  CAS  Google Scholar 

  53. Cao R, Wu HL, Veitonmaki N et al (1996) Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci USA. 96(10): 5728-5733

    Article  Google Scholar 

  54. Duggan C, Maguire T, McDermott E et al (1995) Urokinase plasminogen activator and urokinase plasminogen activator receptor in breast cancer. Int J Cancer. 61(5): 597-600

    Article  PubMed  CAS  Google Scholar 

  55. Grondahl-Hansen J, Peters HA, van Putten WLJ et al (1995) Prognostic significance of the receptor for urokinase type plasminogen activator in breast cancer. Clin Cancer Res. 1: 1079-1087

    PubMed  CAS  Google Scholar 

  56. Paliouras M, Borgono C, Diamandis EP (2007) Human tissue kallikreins: The cancer biomarker family. Cancer Lett. 249: 61-79

    Article  PubMed  CAS  Google Scholar 

  57. Scorilas A, Gregorakis AK (2006) mRNA expression analysis of human kallikrein 11 (KLK11) may be useful in the discrimination of benign prostatic hyperplasia from prostate cancer after needle prostate biopsy. Biol. Chem. 387(6): 789–793

    Article  PubMed  CAS  Google Scholar 

  58. Stavropoulou P, Gregorakis AK, Plebani M et al (2005) Expression analysis and prognostic significance of human kallikrein 11 in prostate cancer. Clin. Chim. Acta 357(2): 190–195

    Article  PubMed  CAS  Google Scholar 

  59. Obiezu CV, Soosaipillai A, Jung K et al (2002) Detection of human kallikrein 4 in healthy and cancerous prostatic tissues by immunofluorometry and immunohistochemistry. Clin. Chem. 48(8): 1232–1240

    PubMed  CAS  Google Scholar 

  60. Obiezu CV, Shan SJ, Soosaipillai A et al (2005) Human kallikrein 4: quantitative study in tissues and evidence for its secretion into biological fluids. Clin. Chem. 51(8): 1432–1442

    Article  PubMed  CAS  Google Scholar 

  61. Borgono CA, Michael IP, Diamandis EP (2004) Human tissue kallikreins: physiologic roles and applications in cancer. Mol. Cancer Res. 2: 257–280

    PubMed  CAS  Google Scholar 

  62. Borgono CA, Diamandis EP (2004) The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer 4: 876–890

    Article  PubMed  CAS  Google Scholar 

  63. Obiezu CV, Diamandis EP (2005) Human tissue kallikrein gene family: applications in cancer. Cancer Lett. 224(1): 1–22

    PubMed  CAS  Google Scholar 

  64. Obiezu CV, Scorilas A, Katsaros D et al (2001) Higher human kallikrein gene 4 (KLK4) expression indicates poor prognosis of ovarian cancer patients. Clin. Cancer Res. 7: 2380–2386

    PubMed  CAS  Google Scholar 

  65. Kim H, Scorilas A, Katsaros D et al (2001) Human kallikrein gene 5 (KLK5) expression is an indicator of poor prognosis in ovarian cancer. Br. J. Cancer 84(5): 643–650

    Article  PubMed  CAS  Google Scholar 

  66. Sher YP, Chou CC, Chou RH et al (2006) Human kallikrein 8 protease confers a favourable clinical outcome in non-small cell lung cancer by suppressing tumor cell invasiveness. Cancer Res. 66: 11763-11770

    Article  PubMed  CAS  Google Scholar 

  67. Goyal J, Smith KM, Cowan JM et al (1998) The role of NES1 serine protease as a novel tumor suppressor. Cancer Res. 58: 4782-4786

    PubMed  CAS  Google Scholar 

  68. Beaufort N, Debela M, Creutzburg S et al (2006) Interplay of human tissue kallikrein 4 (hK4) with the plasminogen activation system: hK4 regulates the structure and functions of the urokinase-type plasminogen activator receptor (uPAR). Biol Chem. 387(2): 217-22

    Article  PubMed  CAS  Google Scholar 

  69. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 8: 221–233

    Article  PubMed  CAS  Google Scholar 

  70. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 4: 617–629

    Article  PubMed  CAS  Google Scholar 

  71. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 69(3): 562–573

    Article  PubMed  CAS  Google Scholar 

  72. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2: 161–174

    Article  PubMed  CAS  Google Scholar 

  73. Genersch E, Haye K, Neuenfeld Y et al (2000) Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and independent pathways. J. Cell Sci. 113: 4319-4330

    PubMed  CAS  Google Scholar 

  74. Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 103(9): 1237–1241

    Article  PubMed  CAS  Google Scholar 

  75. Balbín M, Fueyo A, Tester AM et al (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genet. 35: 252-257

    Article  PubMed  Google Scholar 

  76. Gorrin-Rivas MJ, Arii S, Furutani M et al (2000) Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin. Cancer Res. 6: 1647-1654

    PubMed  CAS  Google Scholar 

  77. Gorrin-Rivas MJ, Arii S, Mori A et al (2001) Implications of human macrophage metalloelastase and vascular endothelial growth factor gene expression in angiogenesis of hepatocellular carcinoma. Ann. Surg. 231(1): 67-73

    Article  Google Scholar 

  78. Hofmann HS, Hansen G, Richter G et al (2005) Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Cancer Res. 11: 1086-1092

    CAS  Google Scholar 

  79. Sternlicht MD, Lochter A, Sympson CJ et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 98(2): 137-146

    Article  PubMed  CAS  Google Scholar 

  80. Ichikawa Y, Ishikawa T, Momiyama N et al (2006) Matrilysin (MMP-7) degrades VE-cadherin and accelerates accumulation of beta-catenin in the nucleus of human umbilical vein endothelial cells. Oncol. Rep. 15: 311-315

    PubMed  CAS  Google Scholar 

  81. Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 103: 1237–1241

    Article  PubMed  CAS  Google Scholar 

  82. Rojiani MV, Alidina J, Esposito N et al (2010) Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 3: 775–781

    PubMed  Google Scholar 

  83. Noël A, Jost M, Maquoi E (2008) Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol. 19(1): 52–60

    Google Scholar 

  84. Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer. 8: 932– 941

    Article  Google Scholar 

  85. Rocks N, Paulissen G, El Hour M et al (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 90(2): 369–379

    Article  PubMed  CAS  Google Scholar 

  86. Boutet P, Agüera-González S, Atkinson S et al (2009) Cutting edge: the metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J Immunol. 1: 182(1): p. 49-53

    Google Scholar 

  87. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278(1): 16-27

    Article  PubMed  CAS  Google Scholar 

  88. Iruela-Arispe ML, Carpizo D, Luque A (2003) ADAMTS1: a matrix metalloprotease with angioinhibitory properties. Ann. NY. Acad. Sci. 995: 183-190

    Article  PubMed  CAS  Google Scholar 

  89. Kuno K, Bannai K, Hakozaki M et al (2004) The carboxy-terminal half region of ADAMTS-1 suppresses both tumorigenicity and experimental tumor metastatic potential. Biochem. Biophys. Res. Commun. 319: 1327-1333

    Article  PubMed  CAS  Google Scholar 

  90. Masui T, Hosotani R, Tsuji S et al (2001) Expression of METH-1 and METH-2 in pancreatic cancer. Clin. Cancer Res. 7: 3437-3443

    PubMed  CAS  Google Scholar 

  91. Cheung HH, St Jean M, Beug ST et al (2011) SMG1 and NIK regulate apoptosis induced by Smac mimetic compounds. Cell Death Dis. 2: e146

    Article  PubMed  CAS  Google Scholar 

  92. Hengartner MO (2000) The biochemistry of apoptosis. Nature. 407: 770-776

    Article  PubMed  CAS  Google Scholar 

  93. MacKenzie SH, Schipper JL, Clark AC (2010) The potential for caspases in drug discovery. Curr Opin Drug Discov Devel. 13(5): 568–576

    PubMed  CAS  Google Scholar 

  94. Los M, Burek CJ, Stroh C, Benedyk K et al (2003) Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design. Drug Discov Today. 8(2): 67-77

    Article  PubMed  CAS  Google Scholar 

  95. Choi KY, Swierczewska M, Lee S et al (2012) Protease-Activated Drug Development. Theranostics. 2(2): 156-178

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeru Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Upadrasta, S., Saini, N. (2014). Proteases and Their Role in Drug Development with an Emphasis in Cancer. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_12

Download citation

Publish with us

Policies and ethics